People assume that taking probiotics results in the beneficial probiotic bacteria colonizing and living in the gut (or sinuses when using L. sakei). It is common to hear the phrase "take probiotics to repopulate the gut" or "improve the gut microbes". The human gut microbiota (human gut microbiome) refers to all the microbes that reside inside the gut (hundreds of species). Probiotics are live bacteria, that when taken or administered, result in a health benefit. But what does the evidence say?

First, it is important to realize that currently supplements and foods contain only a small variety of probiotic species, with some Lactobacillus and Bifidobacterium species among the most common. But they are not the most common bacteria found in the gut. And very important bacteria such as Faecalibacterium prausnitzii (a reduction of which is associated with a number of diseases) are not available at all in supplements. One problem is the F. prausnitzii are "oxygen sensitive" and they die within minutes upon exposure to air, a big problem when trying to produce supplements.

The evidence from the last 4 years  of L. sakei use for sinusitis treatment is that for some reason, the L. sakei is not sticking around and colonizing in the sinuses. My family's experiences and the experience of other people contacting me is that every time a person becomes sick with a cold or sore throat, it once again results in sinusitis, and then another treatment with a L. sakei product is needed to treat the sinusitis. And of course this has been a surprise and a big disappointment.

The same appears to be true for probiotics (whether added to a food or in a supplement) that are taken for other reasons, including intestinal health. Study after study, and a review article, finds that the beneficial bacteria do not colonize in the gut even if there are health benefits from the probiotics. That is, there may be definite health benefits from the bacteria, but within days of stopping the probiotic (whether in a food or a supplement) it is no longer found in the gut. Researchers know this because they can see what bacteria are in the gut by analyzing (using modern genetic sequencing tests) what is in the fecal matter (the stool).

However, the one exception to all of the above is a fecal microbiota transplant (FMT) - which is transfer of fecal matter from one person to another. There the transplanted microbes of the donor do colonize the recipient's gut, referred to as "engraftment of microbes". Some researchers found that viruses in the fecal matter helped with the engraftment. So it looks like more than just some bacterial strains are involved. Another thing to remember is that study after study finds that dietary changes result in microbial changes in the gut, and these changes can occur very quickly.

From Gut Microbiota News Watch: Learning what happens between a probiotic input and a health output

What scientists know is that probiotics in healthy individuals are associated with a number of benefits. Meta-analyses of randomized, controlled trials show that probiotics help prevent upper respiratory tract infections, urinary tract infections, allergy, and cardiovascular disease risk in adults. But between the input and the output, what happens? A common assumption is that probiotics work by influencing the gut microbe community, leading to an increase in the diversity of bacterial species in the gut ecosystem and measurable excretion in the stool.

But this theory doesn’t seem to be true, according to a recently published systematic review by Kristensen and colleagues in Genome Medicine. Authors of the review analyzed seven studies and found no evidence that probiotics have the ability to change fecal microbiota composition. So even though individuals in the different studies were ingesting live bacterial species, the bacteria didn’t stick around to increase the diversity of the gut fecal microbiota.

Do probiotics alter the fecal composition of healthy adults? The answer seems to be no,” says Dr. Mary Ellen Sanders, Executive Science Officer for the International Scientific Association for Probiotics and Prebiotics (ISAPP)....Dr. Dan Merenstein, Research Division Director and Associate Professor of Family Medicine at Georgetown University Medical Center in Washington, DC (USA), agrees. “Initially when probiotics were studied, some people expected to see permanent colonization. We now realize that is unlikely to occur,” he says. “This study shows that the probiotics tested to date do not result in overarching bacterial community structure changes in healthy subjects. But clinical effects are clearly demonstrated for probiotics, and likely some are mediated by microbiome changes.

At issue, then, is not what probiotics do for healthy individuals, but exactly how they work: the so-called ‘mechanism’. Sanders, who described some alternative mechanisms in her BMC Medicine commentary about the Kristensen review, points out a logical error in news stories worldwide that covered the article: the assumption that if probiotics fail to change the microbiota composition, they fail to have any health effects. Sanders emphasizes that probiotics might work in many possible ways. “Probiotics may act through changing the function of the resident microbes, not their composition. They may interact with host immune cells,” she says. “They may inhibit opportunistic pathogens that are not dominant members of the microbiota. They may promote microbiota stability… .” 

  Do you want to live longer and be healthy at the same time? Some possible ways may be to restrict the calories in the diet (every day) or to practice intermittent calorie restriction (a fasting mimicking diet a few days a month or even each week, such as the 5:2 diet). Previous studies in animals and humans have suggested that periodic fasting can reduce body fat, cut insulin levels, and provide other benefits. Studies in animals found that sharply restricting calories (calorie restriction or CR) daily resulted in longer, healthier lives, but it is unknown if the benefits of chronic calorie restriction also holds true for humans, and even if it might be dangerous. And really - how many people would actually want to reduce their calorie intake by 25% or more day in and day out for years? Intermittent calorie restriction seems much, much easier.

Two recently published studies suggest health benefits of calorie restriction diets - chronic calorie restriction in adult rhesus monkeys, and intermittent calorie restriction (a fasting mimicking diet a few days a month) in humans.

Researchers at the Univ. of Wisconsin–Madison and National Institute of Aging reanalyzed two studies they had originally done with conflicting results, and now they reported in Nature Communications that chronic calorie restriction produced health benefits (such as lower incidence of cancer, cardiovascular problems) and longer life in rhesus monkeys. Since these primates have human-like aging patterns, they thought that CR would also have similar benefits in humans - a longer, healthier life.  The researchers describe one monkey they started on a 30 percent calorie restriction diet when he was 16 years old (late middle age for rhesus monkeys), and that he is now 43 (a longevity record for the species). They found that in nonhuman primates calorie restriction is beneficial when started in adulthood (especially late middle age in males), but does not improve survival when started in juveniles (young animals) - and in fact they tended to die at an earlier age than the normal diet group of primates.

In the other study (in Science Translational Medicine), research suggests it is possible to gain anti-aging benefits with a “fasting-mimicking diet,” practiced just five days a month. 100 healthy adults (aged 20 to 70) were randomly assigned to either a group following a low-calorie "fasting-mimicking" diet (FMD) five days a month, for 3 months, or a normal diet control group. After 3 months, the control group also went on the fasting mimicking diet. Test subjects followed a 50 percent calorie restricted diet (totaling about 1,100 calories on the first day) and 70 percent diet (about 700 calories) on the next four days, then ate whatever they wanted for the rest of the month. The calorie-restricted diet was low in calories, sugars, and protein, was 100 percent plant-based, and featured vegetable soups, energy bars, energy drinks, and a chip snack, as well as mineral and vitamin supplements. (Note that Longo and Univ. of Southern California are both owners of L-Nutra, the company that manufactures the diet. But Longo says he takes no salary or consulting fees from the company.)

But it still wasn't easy for the test subjects to follow the 5 days of restricted calories per month because there was a 25% drop out rateHealth benefits (about a 6 pound weight loss, smaller waistlines, lower blood pressure, lower levels of inflammation, and better levels of glucose, triglycerides and cholesterol, etc.), showed up after the third month and persisted for at least three months—even after subjects had returned full-time to a normal diet. They lost body fat, but lean muscle mass remained unchanged. They found that the benefits were greater for people who were obese or otherwise unhealthy. In summary, the researchers said that 3 cycles of the 5 days per month of fasting-mimicking diet improved the levels of a variety of "markers/risk factors associated with poor health and aging and with multiple age-related diseases" (such as cancer, diabetes, heart disease, etc).

Other researchers say there is no need to suffer through such extreme diets, but to instead follow a healthy lifestyle, which includes a healthy diet (with lots of vegetables, fruits, legumes, seeds, whole grains, and nuts), and to exercise. And remember - nowhere does following restricted calorie diets mean you'll live longer - just that you should be healthier as you age (hopefully). There are no guarantees in life...

From Science Translational Medicine: Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease

Mice that fast periodically are healthier, metabolically speaking. To explore whether fasting can help people as well, Wei et al. studied 71 people who either consumed a fasting-mimicking diet for 5 days each month for 3 months or maintained their normal diet for 3 months and then switched to the fasting schedule. The fasting-like diet reduced body weight and body fat, lowered blood pressure, and decreased the hormone IGF-1, which has been implicated in aging and disease. A post hoc analysis replicated these results and also showed that fasting decreased BMI, glucose, triglycerides, cholesterol, and C-reactive protein (a marker for inflammation). These effects were generally larger in the subjects who were at greater risk of disease at the start of the study. A larger study is needed to replicate these results, but they raise the possibility that fasting may be a practical road to a healthy metabolic system.

From Nature Communications:  Caloric restriction improves health and survival of rhesus monkeys

Image result for eyes A recent study had great results in preventing glaucoma or stopping the progress of glaucoma by supplementing the diet of mice with vitamin B3 (nicotinamide). But now the research needs to see if this also holds true for humans. Glaucoma is a common neurodegenerative disease that results in vision loss. Two main risk factors are increasing age and high intraocular pressure (pressure in the eye). The researchers said that their next step is testing B3 in human glaucoma patients. So stay tuned...

Vitamin B3, also known as niacin, is an essential vitamin for health, but both deficiencies and too high doses have negative health effects. It is recommended that adults get between 14 mg to 18 mg of niacin per day. Since it is not stored in the body (the excess will be excreted in urine), then you need to get a continuous supply from your diet. As seen in so many other studies of vitamins and minerals, there is no evidence of adverse effects from the consumption of naturally occurring niacin in foods, but one can get too much from supplements (along with negative health effects). What foods are good sources of B3 (niacin)? Foods highest in B3 (niacin) are tuna, chicken, turkey, but other good sources are anchovies, salmon, sardines, red meat, peanuts, nuts, seeds, eggs, mushrooms, dairy foods. lentils, beans, potatoes, and grain products. From Medical Xpress:

Vitamin B3 prevents glaucoma in laboratory mice

In mice genetically predisposed to glaucoma, vitamin B3 added to drinking water is effective at preventing the disease, a research team led by Jackson Laboratory Professor and Howard Hughes Medical Investigator Simon W.M. John reports in the journal Science. The vitamin administration was surprisingly effective, eliminating the vast majority of age-related molecular changes and providing a remarkably robust protection against glaucoma. It offers promise for developing inexpensive and safe treatments for glaucoma patients.

Glaucoma is one of the most common neurodegenerative diseases, affecting an estimated 80 million people worldwide. In most glaucoma patients, harmfully high pressure inside the eye or intraocular pressure leads to the progressive dysfunction and loss of retinal ganglion cells. Retinal ganglion cells are the neuronal cells that connect the eye to the brain via the optic nerve. Increasing age is a key risk factor for glaucoma, contributing to both harmful elevation of intraocular pressure and increased neuronal vulnerability to pressure-induced damage.

Conducting a variety of genomic, metabolic, neurobiological and other tests in mice susceptible to inherited glaucoma, compared to control mice, the researchers discovered that NAD, a molecule vital to energy metabolism in neurons and other cells, declines with age. The decrease in NAD levels reduces the reliability of neurons' energy metabolism, especially under stress such as increased intraocular pressure. 

In essence, the treatments of vitamin B3 (nicotinamide, an amide form of vitamin B3, also called niacinamide) boosted the metabolic reliability of aging retinal ganglion cells, keeping them healthier for longer. "Because these cells are still healthy, and still metabolically robust," says JAX Postdoctoral Associate Pete Williams, first author of the study, "even when high intraocular pressure turns on, they better resist damaging processes." The researchers also found that a single gene-therapy application of Nmnat1 (the gene for an enzyme that makes NAD from nicotinamide) prevented glaucoma from developing in this mouse model[Original study.}

 A new study has summarized what we know about fungi that live in and on babies - and yes, we all have fungi both on and within us. It's called the mycobiome. In healthy individuals all the microbes (bacteria, viruses, fungi, etc) live in balanced microbial communities, but the communities can become "out of whack" (dysbiosis) for various reasons, and microbes that formerly co-existed peacefully can multiply and become problematic. Or other pathogenic microbes can enter the community, and the person becomes ill.

In healthy adults, approximately 0.1% of the microbes in the adult intestine are fungi, from approximately 60 unique species. Most species live peacefully in the body, and some fungi even have health benefits (e.g., Saccharomyces boulardii prevents gastrointestinal disease). Some fungi that many view as no good and involved with diseases (e.g., Candida and Aspergillus) are also found normally in healthy people. Studies show that normally infants also have fungi. Some fungi that live in the baby's gut (thus detected in fecal samples) are Candida (including C. albicans), Saccharomyces, and Cladosporium. The researchers (from the Univ. of Minnesota) point out that the study of fungi in babies has been neglected and much more research needs to be done.

Whether an infant is born vaginally or through cesarean delivery (C-section) affects the composition of the baby's bacterial communities over the first 6 months of life. And similarly, it looks like when the baby passes through the birth canal, the baby is exposed to the mother's mycobiota (fungi), and then these colonize in the infant's gut. Babies born by C-section have some differences in their fungi, such as being colonized by the mother's skin fungi (such as Malassezia fungi). After birth, a parent kissing and touching the baby (skin to skin contact) also transmits microbes, including fungi, to the baby.

Whether a baby drinks breast milk or formula strongly affects the infant's bacteria within the GI tract. For example, breast-fed infants have more Bifidobacteria and Labctobacilli in their gut compared to formula-fed infants. One study found about 700 species of bacteria in breast milk. Thus, scientists think that human breast milk also influences the infant gut mycobiota (fungi), although this research still needs to be done.

Whether a baby is born prematurely or at term (gestational age) is important. For infants born prematurely, intestinal fungi can cause big problems, such as an overgrowth in the gut. For example, 10% of premature babies get invasive, systemic Candidiasis, and about 20% die. Some factors leading to this are: a naïve immune system, bacterial communities out of whack (dysbiosis) due to antibiotic exposure, and use of parenteral nutrition (because this doesn't contain all the microbes from the mother that are in breast milk). In premature infants, beneficial fungi such as S. boulardii, may help to regulate the growth of opportunistic fungal colonizers such as Candida.

it is clear that whether the baby received antibiotics is important. The bacterial community of infants is altered by exposure to antibiotics in both term and preterm infants. For example, in a lengthy study over the first 3 years of life, infants receiving multiple courses of antibiotics had bacterial community changes following antibiotics and their gut bacterial microbiome became less diverse (fewer species). Although most commonly used antibiotics do not directly act on fungi, anti-bacterial antibiotic exposure is associated with alterations to the mycobiota (fungi) -  such as increased rates of fungal colonization, fungal overgrowth, and changes in the fungal community. For ex., premature infants exposed to cephalosporin antibiotics have an increased risk for invasive Candidiasis (a fungal overgrowth).

Out of whack (dysbiotic) microbial communities, incuding fungi, are found in IBD (intestinal bowel diseases) in children. They have more of some fungi (e.g. Pichia jadinii and Candida parapsilosis) and less of Cladosporium cladosporiodes, and an overall decrease in fungal diversity in the gut, as compared to healthy children.

From BMC Medicine: Infant fungal communities: current knowledge and research opportunities

The microbes colonizing the infant gastrointestinal tract have been implicated in later-life disease states such as allergies and obesity. Recently, the medical research community has begun to realize that very early colonization events may be most impactful on future health, with the presence of key taxa required for proper immune and metabolic development. However, most studies to date have focused on bacterial colonization events and have left out fungi, a clinically important sub-population of the microbiota. A number of recent findings indicate the importance of host-associated fungi (the mycobiota) in adult and infant disease states, including acute infections, allergies, and metabolism, making characterization of early human mycobiota an important frontier of medical research. This review summarizes the current state of knowledge with a focus on factors influencing infant mycobiota development and associations between early fungal exposures and health outcomes. We also propose next steps for infant fungal mycobiome research....

 A new study found differences in gut microbes between active women (they exercised at least the recommended amount) and those that are sedentary. When the gut bacteria were analyzed with modern tests (genetic sequencing) the active women had more of the health promoting beneficial bacteria such as Faecalibacterium prausnitzii, Roseburia hominis, and Akkermansia muciniphila than the sedentary women. The sedentary women also had some bacterial species not seen in the active women. The researchers said that exercise "modifies the composition of gut microbiota" (the gut microbes) in a way beneficial for health.

And what is the recommended minimal amount of exercise? The World Health Organization recommends at least 3 days of exercise per week for 30 minutes at a moderate intensity. Note that exercise can mean doing exercises, but it can also include walking briskly, intense housework (scrubbing, vacuuming with lots of bending, etc.), gardening (digging, raking, etc), or shoveling snow, etc. In this study the group of active women had at least 3 hours of physical exercise per week. Note that a sedentary lifestyle is associated with a high incidence of chronic diseases such as cardiovascular disease, cancer and diabetes, while physical exercise or activity has metabolic and immune health benefits (prevents disease).

But...reading the full study, the research also showed that the active group ate more fruits and vegetables - which we know has an effect on the gut microbiome and feeds beneficial bacteria. Although the diets of the 2 groups of women were similar in total carbohydrates, protein and fat content eaten, the active women ate more fruits, vegetables, and fiber, and the sedentary group ate more processed meat. So it looks like both exercise and a good amount of fruits and vegetables may be important for nurturing beneficial bacteria. By the way, the 3 species of beneficial bacteria mentioned currently are not found in any probiotic supplements on the market. (Earlier posts on the beneficial F. prausnitzii and Akkermansia muciniphila). From PLoS ONE:

Differences in gut microbiota profile between women with active lifestyle and sedentary women

Physical exercise is a tool to prevent and treat some of the chronic diseases affecting the world’s population. A mechanism through which exercise could exert beneficial effects in the body is by provoking alterations to the gut microbiota, an environmental factor that in recent years has been associated with numerous chronic diseases. Here we show that physical exercise performed by women to at least the degree recommended by the World Health Organization can modify the composition of gut microbiota. Using high-throughput sequencing of the 16s rRNA gene, eleven genera were found to be significantly different between active and sedentary women. Quantitative PCR analysis revealed higher abundance of health-promoting bacterial species in active women, including Faecalibacterium prausnitzii, Roseburia hominis and Akkermansia muciniphila. Moreover, body fat percentage, muscular mass and physical activity significantly correlated with several bacterial populations. In summary, we provide the first demonstration of interdependence between some bacterial genera and sedentary behavior parameters, and show that not only does the dose and type of exercise influence the composition of gut microbiota, but also the breaking of sedentary behavior.

Sedentary lifestyle is associated with a high incidence of chronic diseases such as cardiovascular disease, cancer and diabetes. Physical exercise is a powerful preventative and treatment intervention that is known to be effective in generating metabolic and immune health benefits. The gut microbiota is essential for processing dietary components and has a major role in shaping the immune system.... Dysbiosis or imbalance in gut microbiota has been associated with many diseases, among which are ulcerative colitis, Crohn's disease, colon cancer, metabolic syndrome, type I and type II diabetes, cardiovascular disease, allergy, asthma, eczema and autism.....Several studies in experimental models have addressed the relationship between gut microbiota composition and physical exercise....Collectively, these findings indicate that modulation of the microbiota by exercise depends not only on the physiological state of the individual, but also on the diet.

A total of 15 phyla were detected, in order of presence: Bacteroidetes (54%), Firmicutes (44%), Proteobacteria (0.96%), Tenericutes (0.39%), Verrucomicrobia (0.11%), Euryarchaeota (0.08%), Actinobacteria (0.07%), Lentisphaerae (0.06%), Cyanobacteria (0.050%), Spirochaetes (0.04%), Fusobacteria (0.014%), Elusimicrobia (0.009%), Synergistetes (0.007%), kTM7 (0.003%), and Acidobacteria (0.0001%). Acidobacteria (2 subjects), Elusimicrobia (2 subjects) and Spirochaetes (2 subjects) phyla were detected only in sedentary subjects.... At the genus level, there were significant differences in eleven genera: Bifidobacterium, Barnesiellaceae, Odoribacter, Paraprevotella, Turicibacter, Clostridiales, Coprococcus, Ruminococcus, and two unknown genera of Ruminococcaceae family. Given the importance of some bacterial species in health, the presence of Bifidobacterium longum, Faecalibacterium prausnitzii, Roseburia hominis, Akkermansia muciniphila was measured by qPCR. Analyses revealed a more significant abundance of F. prautznnii, R. hominis and A. muciniphila in active than in sedentary women.

Among all the genera studied, the abundance of eleven of them was significantly different between the active and sedentary group, with Paraprevotella and an unclassified genus of the Desulfovibrionaceae family specifically associated with sedentarism parameters, while the remaining genera where largely associated with diet parameters.....Nonetheless, as exercise and diet often go hand in hand, an active lifestyle is frequently associated with a high consumption of fruits and vegetables, whereas sedentarism is associated with the consumption of high-calorie and fatty foods. Indeed, exercise interventions in human populations have resulted in an improvement in diet habits. Although the diets were similar in our study regarding total carbohydrates, protein and fat content, significant differences were observed for fiber (higher in the active group) and processed meat (higher in the sedentary group).

 After writing about Lactobacillus sakei in the sinuses for several years (present in healthy sinuses, absent or less in those with chronic sinusitis, and also a treatment for chronic sinusitis), I wondered whether L. sakei is found anywhere else in the body. Today I read a study about gut microbes and strokes and there it was - the presence of L. sakei in the gut. Specifically, a study found that people who have ischemic strokes tend to have lower amounts ("depletion") of L. sakei in the gut than healthy people, even though it was detected in 80% of both groups.

The study found that in people with ischemic strokes there was evidence for the gut microbes being out of whack (dysbiosis), as well as more inflammation, and more of certain bacteria species (Atopobium cluster and Lactobacillus ruminis), and depletion of L. sakei bacteria. The researchers took samples of stool (fecal samples) from each person of both groups (ischemic stroke group and healthy group) and analyzed the stool with modern tests (genetic sequencing) to see whether 22 groups of bacteria were in it. (Note that there are normally hundreds of species of bacteria living in a healthy person's gut, as well as viruses, fungi, etc.).

So once again it looks like L. sakei may be beneficial bacteria, even in the gut. The researchers were careful to point out that they couldn't say that certain bacteria caused the strokes - just that there was an association. And what diet is associated with lower levels of inflammation in the body? Once again - a diet with lots of fruits, vegetables, whole grains, nuts, seeds, and legumes (think Mediterranean style diet). You want to feed the beneficial bacteria in the gut. Excerpts from PLoS One:

Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke

The role of metabolic diseases in ischemic stroke has become a primary concern in both research and clinical practice. Increasing evidence suggests that dysbiosis is associated with metabolic diseases. The aim of this study was to investigate whether the gut microbiota, as well as concentrations of organic acids, the major products of dietary fiber fermentation by the gut microbiota, are altered in patients with ischemic stroke, and to examine the association between these changes and host metabolism and inflammation. We analyzed the composition of the fecal gut microbiota and the concentrations of fecal organic acids in 41 ischemic stroke patients and 40 control subjects via 16S and 23S rRNA-targeted quantitative reverse transcription (qRT)-PCR and high-performance liquid chromatography analyses..... Although only the bacterial counts of Lactobacillus ruminis were significantly higher in stroke patients compared to controls, multivariable analysis showed that ischemic stroke was independently associated with increased bacterial counts of Atopobium cluster and Lactobacillus ruminis, and decreased numbers of Lactobacillus sakei subgroup, independent of age, hypertension, and type 2 diabetes....Together, our findings suggest that gut dysbiosis in patients with ischemic stroke is associated with host metabolism and inflammation.    

Ischemic stroke is associated with metabolic diseases including obesity, type 2 diabetes (T2D), and dyslipidemia. Systemic low-grade inflammation is also closely linked to metabolic disorders and plays a substantial role in the pathogenesis of cardiovascular diseases, including ischemic stroke.....Increasing evidence suggests that dysbiosis of the gut microbiota is associated with the pathogenesis of both intestinal disorders, such as inflammatory bowel disease, and extra-intestinal disorders, including metabolic diseases.

In our study, the 22 bacterial groups/genera/species examined were comprised of (1) six anaerobes that predominate the human intestine (Clostridium coccoides group, Clostridium leptum subgroup, Bacteroides fragilis group, Bifidobacterium, Atopobium cluster, and Prevotella); (2) seven potential pathogens (Clostridium difficile, Clostridium perfringens, Enterobacteriaceae, Enterococcus spp., Streptococcus spp., Staphylococcus spp., and Pseudomonas spp.); and (3) nine lactobacilli (L. gasseri subgroup, L. brevis, L. casei subgroup, L. fermentum, L. fructivorans, L. plantarum subgroup, L. reuteri subgroup, L. ruminis subgroup, and L. sakei subgroup).

Although only the bacterial counts of L. ruminis were significantly higher in stroke patients compared to the controls.....Thus, increased L. ruminis subgroup counts might contribute to inflammation in stroke patients. Conversely, ischemic stroke was also associated with decreased counts of other Lactobacillus species such as the L. sakei subgroup. It was previously reported that L. sakei is associated with higher BMI in healthy adults and the elderly. Notably, a significant depletion of L. sakei was reported in the sinus mucosa of patients with chronic rhinosinusitis. These organisms were found to provide a protective effect against sinus mucosa infection through the competitive inhibition of pathogenic bacteria.... depletion of these bacteria might be deleterious to intestinal mucosal defense in patients with stroke

Image result for black licorice Avoid eating licorice during pregnancy? That licorice is a food to avoid during pregnancy (or only eat in tiny amounts) will be news to many. Most people think of licorice (or liquorice) as a candy, but it can also be used as a herbal medicine that can have negative health effects, especially in large doses (e.g, high blood pressure, loss of potassium). The licorice flavor comes from the root of the plant (licorice root). Licorice contains glycyrrhizin, which is in black licorice candy, and in some chewing gums, ice creams, syrups, soft drinks, supplements, herbal teas, and other products.

In 2016, the government of Finland warned against consuming licorice (including black licorice and salty licorice) during pregnancy. In the United States, the FDA does not warn pregnant women about eating licorice or licorice root. The National Institutes of Health (NIH) recommends that pregnant women avoid consuming large amounts of licorice root in food or taking it as a supplement. But how about small amounts of licorice? And what are possible effects during pregnancy?

A recent study in Finland compared children (average age of 12 1/2 years) whose mothers had either consumed little to no licorice during pregnancy or had consumed large amounts of licorice (high glycyrrhizin levels were calculated as more than 500 milligrams per week). Note that 500 mg glycyrrhizin is equal to 250 grams or 8.8 oz licorice. The researchers found that children whose mothers ate large amounts of licorice during pregnancy  were about 7 points lower on IQ tests, had poorer memory, and had higher rates of attention deficit/hyperactivity disorder problems than those whose mothers had eaten little or no licorice during pregnancy. High-consumption group girls had earlier and more advanced puberty, and were taller and heavier than those in the low-licorice group.

The researchers wrote that glycyrrhizin results in "glucocorticoid overexposure", which may affect the developing fetus, and the effects persist into early adolescence. The study researchers concluded that pregnant women should be informed that consumption of licorice and other food products containing glycyrrhizin may be associated with harm to their developing baby. A little licorice candy here and there during pregnancy seems to be OK (so don't panic!), but licorice or licorice root is not something that should be eaten or drunk (e.g.,in a tea) regularly. From Science Daily:

Pregnant women should avoid liquorice

A new Finnish study supports food recommendations for families with children in that women should avoid consuming large amounts of liquorice during pregnancy. The limit for safe consumption is not known. In the study, youths that were exposed to large amounts of liquorice in the womb performed less well than others in cognitive reasoning tests carried out by a psychologist. The difference was equivalent to approximately seven IQ points. Those exposed to liquorice also performed less well in tasks measuring memory capacity, and according to parental estimates, they had more ADHD-type problems than others. With girls, puberty had started earlier and advanced further.

The Glaku study carried out by the University of Helsinki, the National Institute for Health and Welfare and the Helsinki and Uusimaa hospital districts compared 378 youths of about 13 years whose mothers had consumed "large amounts" or "little/no" liquorice during pregnancy. In this study a large amount was defined as over 500 mg and little/no as less than 249 mg glycyrrhizin per week. These cutoffs are not based on health effects. 500 mg glycyrrhizin corresponds on average to 250 g liquorice.

Researchers suggest that pregnant women and women planning pregnancy should be informed of the harmful effects that products containing glycyrrhizin -- such as liquorice and salty liquorice -- may have on the fetus. In Finland, this is already reality. In January 2016, the National Institute for Health and Welfare published food recommendations for families with children, in which liquorice was placed in the 'not recommended' category for pregnant women. According to the recommendations, occasional consumption of small amounts such as a portion of liquorice ice cream or a few liquorice sweets is not dangerous.

As a result of animal experiments, the biological mechanism of the effects of liquorice is well known. Glycyrrhizin intensifies the effects of stress hormone cortisol by inhibiting the enzyme that inactivates cortisol. While cortisol is essential to the development of a fetus, it is detrimental in large amounts. It has long been known that glycyrrhizin causes higher blood pressure and shorter pregnancies in humans, but such long-lasting effects on the fetus have not been proven before. [Original study.]

 Interesting idea - that perhaps our community of gut microbes being out of whack (dysbiosis) leads to hypertension. This study was done in both humans and mice - with an analysis of bacteria in both hypertensive individuals and pre-hypertensives, and also healthy individuals (the controls). Then the microbes from 2 hypertensive individuals were transplanted into mice (fecal microbiota transplants). And lo and behold - the mice became hypertensive with an alteration of their gut microbes. This is amazing!

The study showed that transplanting microbes from hypertensives to non-hypertensives caused an elevation in blood pressure in the formerly healthy group. This shows the direct influence of gut microbes on blood pressure. The bacteria found in both the pre-hypertensives and hypertensives (especially an overgrowth of Prevotella and Klebsiella bacteria) are those linked to inflammation. And what kind of diet is linked to that bacteria? A high fat diet. Yes, the Western diet with lots of fat and highly processed foods.

The researchers talked about other research also showing Prevotella being associated not only with hypertension, but also other diseases (e.g., periodontal diseases and rheumatoid arthritis). On the other hand, Faecalibacterium, Oscillibacter, Roseburia, Bifidobacterium, Coprococcus, and Butyrivibrio, which were "enriched" in healthy controls, were lower in pre-hypertensive and hypertensive persons. In the past I have posted about a "special" bacteria that is even called  a "keystone" gut bacteria - Faecalibacterium prausnitziithat is linked to health and is low or absent in the gut in a number of diseases ((here and here). It is not available in a supplement at this time (because it dies within a few minutes upon exposure to oxygen), but diet influences it. A high animal meat, high animal fat, high sugar, highly processed foods, and low fiber diet (the typical Western diet) lowers F. prausnitzii numbers, while a high-fiber, low meat diet increases F. prausnitzii numbers.

What you can do: Feed the beneficial gut microbes by increasing the amount of fruits, vegetables, whole grains, seeds, nuts that you eat. And cut back on the greasy, high fat processed and fast foods.

The following excerpt is misleading - for example, it ignores the first part of the actual study which looked at the gut bacteria of pre-hypertensives, hypertensive, and healthy people. Then gut bacteria from hypertensive people were transplanted into healthy mice, and gut bacteria from healthy people were transplanted into hypertensive mice. Also, it wasn't rats, but mice used in the study. It goes to show why it's important to look at original studies - not just believe articles out there blindly. [See original study.] From Science Daily: Unhealthy gut microbes a cause of hypertension, researchers find

Researchers have found that the microorganisms residing in the intestines (microbiota) play a role in the development of high blood pressure in rats mice....Scientists studied two sets of rats mice, one group with high blood pressure ("hypertensive") and one with normal blood pressure ("normal").... All animals were then given antibiotics for 10 days to reduce their natural microbiota. After the course of antibiotics, the researchers transplanted hypertensive microbiota to normal blood pressure rats mice and normal microbiota to the hypertensive group. 

The researchers found that the group treated with hypertensive microbiota developed elevated blood pressure. A more surprising result is that the rats mice treated with normal microbiota did not have a significant drop in blood pressure, although readings did decrease slightly. This finding is "further evidence for the continued study of the microbiota in the development of hypertension in humans and supports a potential role for probiotics as treatment for hypertension," wrote the researchers. "Studies showing that supplementing the diet with probiotics (beneficial microorganisms found in the gut) can have modest effects on blood pressure, especially in hypertensive models."

NOTE that the actual study said in its CONCLUSIONS:  "Taken together, we have described clearly the disordered profiles of gut microbiota and microbial products in human patients with pre-hypertension and hypertension, established the relationship between gut dysbiosis and hypertension, and provided important evidence for the novel role of gut microbiota dysbiosis as a key factor for blood pressure changes. Our findings point towards a new strategy aimed at preventing the development of hypertension and reducing cardiovascular risks through restoring the homeostasis of gut microbiota, by improving diet and lifestyle or early intervening with drugs or probiotics."

Image result for eggs Remember all the dietary advice that for years told us to avoid or limit consumption of eggs - that since they were high in cholesterol, they were bad for us and would increase our risk for heart disease? And the nonsense that we should only eat the egg whites while throwing out the yolks? Hah...That advice was wrong, which another recent study confirms.

Eggs are an amazingly nutritious food. They’re loaded with high quality protein, healthy fats, vitamins, minerals, high in choline (a brain nutrient), biotin, antioxidants, lutein, and zeaxanthin. One review of studies (involving millions of people) looked at whole egg consumption  and found that high egg consumption (up to one egg per day) is not associated with increased risk of coronary heart disease or stroke, and in fact there was a reduced risk of hemorrhagic stroke. Only among diabetics was there an elevated risk of coronary heart disease with high egg consumption (up to 1 egg per day). Another study found a lower risk of type 2 diabetes in middle-aged men (see post).

A recent study from Finland found that neither cholesterol nor egg intake (eating one egg per day) is associated with an increased risk of dementia or Alzheimer's disease in Finnish men who were followed for 22 years. Instead, eating eggs was associated with better cognitive performance in certain areas such as executive function, which includes memory, problem solving, and planning (they were given neuropsychological tests). From Science Daily:

High cholesterol intake and eggs do not increase risk of memory disorders

A new study from the University of Eastern Finland shows that a relatively high intake of dietary cholesterol, or eating one egg every day, are not associated with an elevated risk of dementia or Alzheimer's disease. Furthermore, no association was found in persons carrying the APOE4 gene variant that affects cholesterol metabolism and increases the risk of memory disorders. APOE4 is common in Finland.

The dietary habits of 2,497 men aged between 42 and 60 years and with no baseline diagnosis of a memory disorder were assessed at the onset the Kuopio Ischaemic Heart Disease Risk Factor Study, KIHD, in 1984-1989 at the University of Eastern Finland. During a follow-up of 22 years, 337 men were diagnosed with a memory disorder, 266 of them with Alzheimer's disease. 32.5 per cent of the study participants were carriers of APOE4.

The study found that a high intake of dietary cholesterol was not associated with the risk of dementia or Alzheimer's disease -- not in the entire study population nor in the carriers of APOE4. Moreover, the consumption of eggs, which are a significant source of dietary cholesterol, was not associated with the risk of dementia or Alzheimer's disease. On the contrary, the consumption of eggs was associated with better results in certain tests measuring cognitive performance

Image result for fast food wikipedia  Another study is adding to the evidence that food packaging  is frequently coated  with harmful chemicals - called perfluorinated chemicals or PFCs. The chemicals are used because they resist grease and stains, but unfortunately they then leach into the food, and when people eat the food - it gets into them. The evidence is also growing that these chemicals have all sorts of harmful health effects, including endocrine disruption (they are hormone disruptors) - even in low doses. They are linked to kidney and testicular cancer, high blood cholesterol levels, thyroid problems, development and immune system problems, low birth weights, and decreased sperm quality. (See earlier post) The list keeps growing each year.

Researchers tested about 400 pieces of food packaging from 27 fast food chains,  including McDonald’s, Burger King, Taco Bell, Chick-Fil-A, Quiznos, Starbucks, and Dunkin’ Donuts (see how they scored). Overall, about 33 percent of the packages contained fluorine (a chemical not found in paper, but is an indicator of perfluorinated chemicals present to make the packaging grease and stain resistant). What is even more disturbing is that when the researchers more closely examined 20 samples to find out exactly what fluorinated compounds they contained - they found that 6 of the more rigorously tested packages contained PFOA (which was used in Teflon). PFOA was phased out for use in the USA years ago due to it being so long-lasting in the environment and its serious health effects, but other countries still produce it. Unfortunately, even the replacement chemicals  seem to be similarly harmful (not surprising because of the chemical similarities), and they also persist in the environment.

It should be pointed out that perfluorinated chemicals are also used in products such as stain and water resistant coatings on clothing, upholstery, carpeting and floor waxes. They are in non-stick coatings in pots and pans. The chemicals leach or migrate out of products and degrade very slowly — thus showing up in air, household dust, water, dirt, wildlife, and people. Yes, studies show that almost everyone in the U.S. has these chemicals in their blood, and unfortunately some of them can stay in the body for years. PFCs pass from mothers to their babies during pregnancy, and in breast milk after birth. Exposure to perfluorinated chemicals from fast food packaging is of big concern for children, because one-third of U.S. children consume fast food daily, and children may be especially susceptible to the adverse health effects.

Yes, we are surrounded by a sea of harmful chemicals that are tough to avoid, but we should at least try to minimize our exposure. Fast food restaurants should be encouraged to use nontoxic alternatives (e.g., aluminum foil or wax paper) - after all, the study showed that there is packaging out there without these chemicals.

What can we do to avoid PFCs? 1) Try to avoid or eat less fast food and food that comes in "grease-proof" containers. 2) Don't use non-stick pots and pans - use stainless steel instead. 3) Try to avoid clothing, upholstered furniture, and carpets with stain and water-resistant coatings. 4) Don't use microwave popcorn bags, and try to avoid microwaving foods in their packaging - use a glass dish instead. 5) Don't use dental floss such as Oral-B Glide dental floss (uses PFC), and use unwaxed or natural wax floss instead. 6) Avoid personal care products that contain ingredients that include the words “fluoro” or “perfluoro". *Please check out the Environmental Working Group site for more information (here and here).

From Science Daily: Extensive use of fluorinated chemicals in fast food wrappers: Chemicals can leach into food

Americans may be consuming fast food wrapped in paper treated with perfluorinated chemicals (PFCs) -- the same chemicals used in stain-resistant products, firefighting materials and nonstick cookware, according to a new study published in the journal Environmental Science & Technology.

Researchers tested more than 400 samples of packaging materials, including hamburger and sandwich wrappers, pastry bags, beverage cups and French fry containers, and found evidence of fluorinated compounds called per- and polyfluoroalkyl substances (PFASs). Of the materials tested, these chemicals were found in 56 percent of dessert and bread wrappers, 38 percent of sandwich and burger wrappers and 20 percent of paperboard.

Previous studies have shown that these PFASs can migrate, contaminating the food and, when consumed, accumulating in the body....Previous studies have linked PFASs to kidney and testicular cancers, thyroid disease, low birth weight and immunotoxicity in children, among other health issues. The chemicals have an especially long half-life and take many years before just 50 percent of the intake leaves the human body. The results are concerning when considering the role of fast food in the American diet. The National Center for Health Statistics reported one-third of U.S. children consume fast food daily.

Samples were collected from a total of 27 fast food restaurant chains including McDonald's, Burger King, Chipotle, Starbucks, Jimmy Johns, Panera and Chick-Fil-A, in and around Boston, San Francisco, Seattle, Washington, D.C., and Grand Rapids, Michigan. The study did not include takeout containers, such as Chinese food boxes or pizza boxes. [Original study]

ez-2016-00435z_0002 Credit: From L. Schaider et al., Fluorinated Compounds in U.S. Fast Food Packaging.