New research shows that the most applied pesticide in the world - glyphosate - is being detected in more and more foods (such as honey, wheat). Glyphosate is a herbicide (weed killer) found in the product Roundup. Its use is increasing annually due to its use on crops genetically engineered to tolerate applications of the herbicide ("Roundup Ready" corn, soybeans, canola).

The latest news is that glyphosate residues are found in oat products, including baby cereals. The FDA (Food and Drug Administration) only started testing this year for glyphosate residues in foods (see post), but they may already be slowing down testing - because they are already talking about shutting down one of the testing labs (tested honey). There are various health concerns about glyphosate and its residues in foods, including that it is a probable carcinogen and a biocide that may disrupt the bacteria of the human gut. What are the long-term health implications of constantly (daily) eating foods with pesticide residues such as glyphosate? No one knows, but it is concerning. Yes, individual foods have low levels, but we're ingesting the pesticide residue in many foods every day - thus chronic exposure. And yes, studies show that it is found in our urine (one European study found it in 100% of people tested)

Note that Monsanto (producer of the glyphosate product Roundup) also encourages farmers to apply Roundup right before harvest as a "preharvest dessicant" to non-genetically modified crops, which also increases the odds that residues will be found in food. (Look at the preharvest application guide from Monsanto for oats and some other crops). What can one do? Buy organic foods - because glyphosate is not allowed to be used in organic farming. From the investigative journalist Carey Gillam's article for Huffington Post:

FDA Tests Confirm Oatmeal, Baby Foods Contain Residues of Monsanto Weed Killer

The U.S. Food and Drug Administration, which is quietly starting to test certain foods for residues of a weed killing chemical linked to cancer, has found the residues in a variety of oat products, including plain and flavored oat cereals for babies.

Data compiled by an FDA chemist and presented to other chemists at a meeting in Florida showed residues of the pesticide known as glyphosate in several types of infant oat cereal, including banana strawberry- and banana-flavored varieties. Glyphosate was also detected in “cinnamon spice” instant oatmeal; “maple brown sugar” instant oatmeal and “peach and cream” instant oatmeal products, as well as others. In the sample results shared, the levels ranged from nothing detected in several different organic oat products to 1.67 parts per million, according to the presentation.

Glyphosate, which is the key ingredient in Monsanto Co.’s Roundup herbicide, is the most widely used weed killer in the world, and concerns about glyphosate residues in food spiked after the World Health Organization in 2015 said a team of international cancer experts determined glyphosate is a probable human carcinogen. Other scientists have raised concerns about how heavy use of glyphosate is impacting human health and the environment.

The EPA maintains that the chemical is “not likely” to cause cancer, and has established tolerance levels for glyphosate residues in oats and many other foods. The levels found by the FDA in oats fall within those allowed tolerances, which for oats is set by the EPA at 30 ppm. The United States typically allows far more glyphosate residue in food than other countries allow. In the European Union, the tolerance for glyphosate in oats is 20 ppm.

Monsanto, which derives close to a third of its $15 billion in annual revenues from glyphosate-based products, has helped guide the EPA in setting tolerance levels for glyphosate in food, and in 2013 requested and received higher tolerances for many foods. The company has developed genetically engineered crops designed to be sprayed directly with glyphosate. Corn, soybeans, canola and sugar beets are all genetically engineered to withstand being sprayed with glyphosate.

Oats are not genetically engineered. But Monsanto has encouraged farmers to spray oats and other non-genetically modified crops with its glyphosate-based Roundup herbicides shortly before harvest. The practice can help dry down and even out the maturity of the crop. “A preharvest weed control application is an excellent management strategy to not only control perennial weeds, but to facilitate harvest management and get a head start on next year’s crop ” according to a Monsanto “pre-harvest staging guide.”  Glyphosate is also used on wheat shortly before harvest in this way, as well as on other crops. A division of the U.S. Department of Agriculture....has been testing wheat for glyphosate residues for years for export purposes and have detected the residues in more than 40 percent of hundreds of wheat samples examined in fiscal 2009, 2010, 2011 and 2012.

Even though the FDA annually examines foods for residues of many other types of pesticides, it has skipped testing for glyphosate residues for decades. It was only in February of this year that the agency said it would start some glyphosate residue analysis. That came after many independent researchers started conducting their own testing and found glyphosate in an array of food products, including flour, cereal, and oatmeal. Monsanto and U.S. regulators have said glyphosate levels in food are too low to translate to any health problems in humans. But critics say such assurances are meaningless unless the government actually routinely measures those levels as it does with other pesticides. And some do not believe any level of glyphosate is safe in food. 

In addition to oats, the FDA also earlier this year tested samples of U.S. honey for glyphosate residues and found all of the samples contained glyphosate residues, including some with residue levels double the limit allowed in the European Union, according to documents obtained through a Freedom of Information Act request. The EPA has not set a tolerance level for glyphosate in honey, so any amount is problematic legally....the FDA did not notify the honey companies involved that their products were found to be contaminated with glyphosate residues, nor did it notify the public. The FDA has also tested corn, soy, eggs and milk in recent months, and has not found any levels that exceed legal tolerance, though analysis is ongoing.

Image result for kidney stones  Yesterday's post on the possibility of riding "medium intensity" (think old fashioned) roller coasters to dislodge and pass kidney stones was amusing, but now I've read of another interesting way to facilitate passing of kidney stones. One study of Turkish men found that having sex 3 to 4 times a week promoted passage of kidney stones under 6 mm in size. Kidney stones are small, hard mineral deposits that form inside the kidneys, affecting up to 15 percent of people in developed countries.

All the men in the 3 groups (Sexual intercourse group, Tamsulosin group, and Control group) were also told to drink 2 liters of water a day to help expel kidney stones. Note that tamsulosin (also called Flomax) is a drug used to improve urination and to help with the passage of kidney stones. They found that after 2 weeks: 83.9% of the Sexual Intercourse group, 47.6% of the Tamsulosin group, and 34.8% of the Control group had successfully passed kidney stones, and after 4 weeks: 93.5% of the Sexual Intercourse group,  81% of the Tamsulosin group, and 78.3% of the Control group had done so. Frequent sex appeared to work, especially in speeding up the process! From the journal Urology:

Can Sexual Intercourse Be an Alternative Therapy for Distal Ureteral Stones? A Prospective, Randomized, Controlled Study.

OBJECTIVE: To investigate the effect of sexual intercourse on spontaneous passage of distal ureteral stones.

The patients were randomly divided into 3 groups with random number table envelope method. Patients in group 1 were asked to have sexual intercourse at least 3-4 times a week. Patients in group 2 were administered tamsulosin 0.4 mg/d. Patients in group 3 received standard medical therapy alone and acted as the controls. The expulsion rate was controlled after 2 and 4 weeks. Differences in the expulsion rate between groups were compared with the chi-square test for 3 × 2 tables. P <.05 was considered as statistically significant.

The mean stone size was 4.7 ± 0.8 mm in group 1, 5 ± 1 mm group 2, and 4.9 ± 0.8 mm group 3 (P = .4). Two weeks later, 26 of 31 patients (83.9%) in the sexual intercourse group, and 10 of 21 patients (47.6%) in tamsulosin group passed their stones, whereas 8 of 23 patients (34.8%) in the control group passed their stones (P = .001). The mean stone expulsion time was 10 ± 5.8 days in group 1, 16.6 ± 8.5 days in group 2, and 18 ± 5.5 days in group 3 (P = .0001).

Our results have indicated that patients who have distal ureteral stones ≤6 mm and a sexual partner may be advised to have sexual intercourse 3-4 times a week to increase the probability of spontaneous passage of the stones.

Image result for roller coaster wikipedia The most amusing study that I've read in a while, but hey, if it works - why not? Bottom line: Riding certain types of roller coasters (such as Big Thunder Mountain at Disney World) enables some people to pass kidney stones. Kidney stones are small, hard mineral deposits that form inside the kidneys, affecting up to 15 percent of people in developed countries.

The researchers made a model kidney (and used actual kidney stones and urine) and brought it on the roller coaster ride multiple times - and found that what they were hearing from patients was true. Riding the medium intensity roller coaster dislodged the kidney stones in many cases so that they can be passed. Can you imagine a prescription for kidney stones that says "Go ride a roller coaster"?  Note that "the ideal coaster is rough and quick with some twists and turns, but no upside down or inverted movements." From Futurity:

Roller coasters can jostle out kidney stones

Riding a roller coaster helps patients pass kidney stones with nearly a 70 percent success rate, research shows. David Wartinger, a professor emeritus in the department of osteopathic surgical specialties at Michigan State University, led both a pilot study and an expanded study to assess whether the stories he was hearing from patients were true. “Basically, I had patients telling me that after riding a particular roller coaster at Walt Disney World, they were able to pass their kidney stone,” Wartinger says. “I even had one patient say he passed three different stones after riding multiple times.” 

This resulted in Wartinger going out and testing the theory. Using a validated, synthetic 3D model of a hollow kidney complete with three kidney stones no larger than 4 millimeters inserted into the replica, he took the model in a backpack on Big Thunder Mountain at the theme park 20 times. His initial results verified patient reports. “In the pilot study, sitting in the last car of the roller coaster showed about a 64 percent passage rate, while sitting in the first few cars only had a 16 percent success rate,” Wartinger says.

The expanded study, conducted with Mark Mitchell, a Michigan State University resident at the time, included riding the same roller coaster with multiple kidney models attached to the researchers. They discovered even better results while sitting in the back of the coaster, with a passage rate of nearly 70 percent. They also found that both studies showed a 100 percent passage rate if the stones were located in the upper chamber of the kidney.

“In all, we used 174 kidney stones of varying shapes, sizes and weights to see if each model worked on the same ride and on two other roller coasters,” Wartinger says. “Big Thunder Mountain was the only one that worked. We tried Space Mountain and Aerosmith’s Rock ‘n’ Roller Coaster and both failed.” Wartinger went on to explain that these other rides are too fast and too violent with a G-force that pins the stone into the kidney and doesn’t allow it to pass. “The ideal coaster is rough and quick with some twists and turns, but no upside down or inverted movements,” he says.

Lithotripsy, which breaks apart kidney stones that are too large to pass, is a common treatment for the problem. Wartinger says the procedure is usually used in cases where the kidney stone is larger than 5 millimeters. “The problem though is lithotripsy can leave remnants in the kidney which can result in another stone,” Wartinger says. “The best way to potentially eliminate this from happening is to try going on a roller coaster after a treatment when the remnants are still small.” He adds that patients could even try going on a coaster once a year as maintenance, lessening the chances of future issues and minimizing health care costs. 

The original pilot study from the Journal of the American Osteopathic Association: Validation of a Functional Pyelocalyceal Renal Model for the Evaluation of Renal Calculi Passage While Riding a Roller Coaster

Image result for turmeric wikipedia The spice turmeric is very popular these days, especially because studies link it to various health benefits. But is this true? Is it better to eat turmeric in foods or take it in pill form as a supplement? Today's post is about a study that was done by the BBC teaming up with researchers at Newcastle University (in the UK) where they looked at whether modest doses of turmeric had health benefits when ingested daily for 6 weeks. Specifically, they looked at what turmeric does to various blood markers thought to be associated with inflammation and changes that could eventually lead to the onset of cancer. It is currently thought that many or turmeric's supposed health benefits come from the compound curcumin found in it.

The researchers took blood samples of 100 volunteers, who were then split up into 3 groups (turmeric powder, a turmeric pill, or a placebo pill daily). Only the group that ingested turmeric in powder form (1 teaspoon mixed in food) showed changes after 6 weeks, and they were exciting beneficial changes in the methylation of DNA. This is because "methylation of the DNA can ‘go wrong’ and this can cause cells to become cancerous".

It's still early days in this research, and more has to be done, but it is exciting. In the meantime, don't take turmeric in pill form, but eat it in foods. It seems that more of the turmeric gets absorbed when eaten with foods, especially foods with fat, and also with a little black pepper. Excerpts from the article written by Michael Mosley, one of the presenters of the broadcast show "Trust Me, I'm A Doctor", from the BBC News:

Could turmeric really boost your health?

Turmeric is a spice which in its raw form looks a bit like ginger root, but when it's ground down you get a distinctive yellowy orange powder that's very popular in South Asian cuisine.....So we tracked down leading researchers from across the country and with their help recruited nearly 100 volunteers from the North East to do a novel experiment. Few of our volunteers ate foods containing turmeric on a regular basis.

Then we divided them into three groups. We asked one group to consume a teaspoon of turmeric every day for six weeks, ideally mixed in with their food. Another group were asked to swallow a supplement containing the same amount of turmeric, and a third group were given a placebo, or dummy pill. The volunteers who were asked to consume a teaspoon of turmeric a day were ingenious about what they added it to, mixing it with warm milk or adding it to yoghurt. Not everyone was enthusiastic about the taste, with comments ranging from "awful" to "very strong and lingering".

But what effect was eating turmeric having on them? We decided to try and find out using a novel test developed at University College, London, by Prof Martin Widschwendter and his team....There are at least 200 different compounds in turmeric, but there's one that scientists are particularly interested in. It gives this spice its colour. It's called curcumin. Thousands of scientific papers have been published looking at turmeric and curcumin in the laboratory - some with promising results. But they've mainly been done in mice, using unrealistically high doses. There have been few experiments done in the real world, on humans.

Prof Widschwendter is not particularly interested in turmeric but he is interested in how cancers start. His team have been comparing tissue samples taken from women with breast cancer and from women without it and they've found a change that happens to the DNA of cells well before they become cancerous. The change is in the "packaging" of the genes. It's called DNA methylation. It's a bit like a dimmer switch that can turn the activity of the gene up or down. The exciting thing is that if it is detected in time this change can, potentially, be reversed, before the cell turns cancerous.

So we asked Prof Widschwendter whether testing the DNA methylation patterns of our volunteers' blood cells at the start and end of the experiment would reveal any change in their risk of cancer and other diseases, like allergies. It was something that had not been done before. Fortunately he was very enthusiastic. "We were delighted," he said, "to be involved in this study, because it is a proof of principle study that opens entirely new windows of opportunity to really look into how we can predict preventive measures, particularly for cancer."

So what, if anything, happened? When I asked him that, he pulled out his laptop and slowly began to speak."We didn't find any changes in the group taking the placebo," he told me. That was not surprising. "The supplement group also didn't also show any difference," he went on. That was surprising and somewhat disappointing.

"But the group who mixed turmeric powder into their food," he continued, "there we saw quite substantial changes. It was really exciting, to be honest. We found one particular gene which showed the biggest difference. And what's interesting is that we know this particular gene is involved in three specific diseases: depression, asthma and eczema, and cancer. This is a really striking finding."

It certainly is. But why did we see changes only in those eating turmeric, not in those taking the same amount as a supplement? Dr Kirsten Brandt, who is a senior lecturer at Newcastle University and who helped run the experiment, thinks it may have something to do with the way the turmeric was consumed. "It could be," she told me, "that adding fat or heating it up makes the active ingredients more soluble, which would make it easier for us to absorb the turmeric.....She also told me, because our volunteers all tried consuming their turmeric in different ways, that we can be confident it was the turmeric that was making the difference and not some other ingredient used to make, say, chicken tikka masala. There is a lot more research that needs to be done, including repeating the experiment to see if these findings can be confirmed.

More information about the study and results from BBC News: Does turmeric really help protect us from cancer?

 We all know that exercise is beneficial for health. Research suggests that exercising out in nature is best for several varied reasons -  including that it lowers markers of inflammation, and that it's good for our gut microbiome (community of gut microbes). The following excerpts are written by Dr. John La Puma encouraging other doctors to prescribe exercise for their patients and why. An important message of his is that exercise is more important than a drug prescription for a number of conditions, including diabetes prevention, reducing the risk of recurrence of several cancers (he mentions breast cancer, but it also holds for prostate cancer). While exercising and walking out in nature may be best, any exercise anywhere is better than no exercise. (Other posts on exercise as prescription medicine are here and here; and check the category exercise for all exercise research posts). From Medscape:

Rx: Exercise Daily -- Outdoors. Doctor's Orders

With dazzling Olympic feats on display all summer, too many of my patients are still literally immobilized. Medically, sitting too long shuts off the enzyme lipoprotein lipase. In people who are sedentary, the enzyme doesn't break down fat to create energy, like it should. But medical prescription for exercise has lagged even the slowest runner. Why? Some reasons are time, training, and money. Time especially is a scarce commodity: The average clinician visit lasts just 20 minutes. Fitness is a shamefully small part of medical training. And as doctors, we don't get paid for discussing exercise, let alone monitoring a prescription and assessing the response. 

Finally, there are practical reasons. Clinicians find it difficult to persuade patients that exercise is more effective than medication for any number of conditions, including stroke recovery, diabetes prevention, and treatment of low back pain. Regular exercise reduces the risk for recurrent breast cancer by approximately 50%. Given all these reasons, it's easy to see why fitness prescriptions are seldom more than an afterthought. Yet even without formally prescribing the frequency, intensity, time, and type of exercise, clinicians can speak with patients and families about fitness in inspiring, life-changing ways.

Because clinicians have a secret weapon to use that most people don't even know about—location. Exercising in nature (in sight of and preferably near water or greenery, whether a deserted beach or an urban park) is better. Walking city streets and the office itself can be harder on your health than you think. In both environments, your attention is demanded and directed—sometimes by digital interruptions, sometimes by vehicles, toxins, or duties. In nature, your attention is drawn, not pushed, to a variety of often unexpected but not unpleasant sounds, colors, aromas, textures, and forms.

A recent Stanford study of nature therapy showed significantly reduced rumination after a 90-minute walk in nature, compared with a 90-minute walk through an urban environment. On MRI, "nature walkers" showed lower activity in an area of the brain linked to risk for mental illness, the subgenual prefrontal cortex, compared with "urban walkers." In other words, nature offers a sense of something bigger than ourselves on which to focus. MRIs show the way the brain changes when that sense occurs to us.

Exercising in nature may improve a person's immune system by enriching the diversity in the microbiota. Microbiota buffer the immune system against chronic stress-related disease. They appear to act as a hormone-producing organ, not simply a collection of beneficial bacteria. Microbiota are sensitive and responsive to physical environmental changes as well as dietary ones. So, exercise in nature may favorably boost microbiota.

And finally, exercise in nature is clinically preferred and calming. A Norwegian study showed that exercise in nature and in view of nature improves both mood and diastolic blood pressure vs exercise without nature. A Chinese study showed higher energy levels, and lower levels of interleukin-6 and tumor necrosis factor (both markers of inflammation), in a forest walking group compared with an urban exercising group. A British study showed significantly improved mood and self-esteem with "green" exercise, with the largest benefits from 5-minute engagements. Five minutes!

Of course, there are areas in our country and world in which it is dangerous to walk, never mind exercise. It may not be as easy to generate sweat and intensity with outdoor exercise as it is with indoor exercise. It may be stormy, or baking hot, or otherwise harsh outside, and the cool recesses of one's own bedroom or the gym may be just perfect for you today. And with the 2013 total cost of inactivity estimated at $24.7 billion for the United States, and with the public sector bearing almost one half of that expense, any exercise anywhere is better than none.  Yet physicians have a therapeutic tool few others in our culture wield—a prescription pad—and we have every patient's attention, at least for a few minutes. Patients try harder when doctors advise them about fitness. 

Image result for ibd Exciting new research about what is going on in the gut microbiome (the community of microbes) of people with Crohn's disease - a debilitating intestinal bowel disease (IBD) which causes severe abdominal pain, diarrhea, weight loss, and fatigue. A number of earlier studies focused on gut bacteria and found dysbiosis (microbial community out of whack) in those with Crohn's disease.

This new research also looked at fungal species and found that there is an "abundance" of 2 species of bacteria (Serratia marcescens and Escherichia coli) and one fungal species (Candida tropicalis) and that these interact in the gut in persons with Crohn's disease. In persons with Crohn's disease the abundance of potentially pathogenic bacteria is increased (Escherichia coli, Serratia marcescens, and Ruminococcus gnavus), while beneficial bacteria (such as Faecalibacterium prausnitzii) are decreased. From Science Daily:

Fungus in humans identified for first time as key factor in Crohn's disease

A Case Western Reserve University School of Medicine-led team of international researchers has for the first time identified a fungus as a key factor in the development of Crohn's disease. The researchers also linked a new bacterium to the previous bacteria associated with Crohn's. The groundbreaking findings, published on September 20th in mBio, could lead to potential new treatments and ultimately, cures for the debilitating inflammatory bowel disease, which causes severe abdominal pain, diarrhea, weight loss, and fatigue. "We already know that bacteria, in addition to genetic and dietary factors, play a major role in causing Crohn's disease," said the study's senior and corresponding author, Mahmoud A Ghannoum, PhD.

Both bacteria and fungi are microorganisms -- infinitesimal forms of life that can only be seen with a microscope. Fungi are eukaryotes: organism whose cells contain a nucleus; they are closer to humans than bacteria, which are prokaryotes: single-celled forms of life with no nucleus. Collectively, the fungal community that inhabits the human body is known as the mycobiome, while the bacteria are called the bacteriome. (Fungi and bacteria are present throughout the body; previously Ghannoum had found that people harbor between nine and 23 fungal species in their mouths.)

The researchers assessed the mycobiome and bacteriome of patients with Crohn's disease and their Crohn's-free first degree relatives in nine families in northern France and Belgium, and in Crohn's-free individuals from four families living in the same geographic area....The researchers found strong fungal-bacterial interactions in those with Crohn's disease: two bacteria (Escherichia coli and Serratia marcescens) and one fungus (Candida tropicalis) moved in lock step. The presence of all three in the sick family members was significantly higher compared to their healthy relatives, suggesting that the bacteria and fungus interact in the intestines. Additionally, test-tube research by the Ghannoum-led team found that the three work together (with the E. coli cells fusing to the fungal cells and S. marcescens forming a bridge connecting the microbes) to produce a biofilm -- a thin, slimy layer of microorganisms found in the body that adheres to, among other sites, a portion of the intestines -- which can prompt inflammation that results in the symptoms of Crohn's disease.

This is first time any fungus has been linked to Crohn's in humans; previously it was only found in mice with the disease. The study is also the first to include S. marcescens in the Crohn's-linked bacteriome. Additionally, the researchers found that the presence of beneficial bacteria was significantly lower in the Crohn's patients, corroborating previous research findings.

Image result for toy blocks  This study reinforces (once again) that actively playing with toy blocks is good for developing the spatial skills and spatial abilities of children. Other studies have shown that playing with puzzles and actively going out and exploring their environment (like riding a bicycle around the neighborhood) are also good for developing spatial skills and spatial abilities. For both boys and girls. Even though unfortunately this study only looked at 8 year old boys. (Hey, where were the girls???) Remember that playing is how children learn, and helping develop spatial skills is good for math, science, and technology. So get out the Legos and toy blocks and encourage children to play and build! From Medical Xpress:

Neuroimaging study: Building blocks activate spatial ability in children better than board games

Research from Indiana University has found that structured block-building games improve spatial abilities in children to a greater degree than board games. The study, which appears in the journal Frontiers in Psychology, measured the relative impact of two games—a structured block-building game and a word-spelling board game—on children's spatial processing, including mental rotation, which involves visualizing what an object will look like after it is rotated. The research lends new support to the idea that such block games might help children develop spatial skills needed in science- and math-oriented disciplines.

Block play changed brain activation patterns," Newman said. "It changed the way the children were solving the mental rotation problems; we saw increased activation in regions that have been linked to spatial processing only in the building blocks group." The structured block-building game used for the study was called "Blocks Rock"; the board game was Scrabble.

The research builds upon previous studies that have shown that children who frequently participate in activities such as block play, puzzles and board games have higher spatial ability than those who participate more in activities such as drawing, riding bikes, or playing with trucks and sound-producing toys.

It is also demonstrates that training on one visuo-spatial task can transfer to other tasks. In this instance, training on the structured block-building game resulted in transfer to mental rotation performance.....To conduct the study, IU researchers placed 28 8-year-olds in a magnetic resonance imaging scanner before and after playing one of the two games. Play sessions were conducted for 30 minutes over the course of five days.

There were no differences in mental rotation performance between the two groups in either the brain activation or performance during the first rotation test and scan. But the block play group showed a change in activation in regions linked to both motor and spatial processing during the second scan. The group who played board games failed to show any significant change in brain activation between the pre- and post-game scans, or any significant improvement on the mental rotation test results.

 Brain scans show building blocks activate spatial ability in kids better than board games Scans of the children's brains show increased activation in the anterior lobe of the cerebellum and the parahippocampus during the second mental rotation test, which was administered after they played with blocks. Credit: Indiana University

Image result for elmleaf blackberry, wikipedia The big scary question: What will happen after antibiotics cease to work? And people start dying by the millions from infections that used to be easily treated? We are fast approaching that point of total antibiotic resistance, with superbugs that resist all antibiotics. More and more disease-causing bacteria are rapidly evolving immunity to every existing antibiotic (see short video). Soon routine surgeries and minor wounds or even scratches could kill a person. About 70% of antibiotics are currently being used (much of it unnecessary) in farm animals - why aren't governments putting a stop to that? Resistant bacteria already result in the deaths of about 700,000 people globally, but experts predict that by 2050 they will kill 10 million people annually.

What is to be done? New antibiotics? Big pharma generally isn't interested - not enough profit. Using good bacteria and other microbes to dominate over pathogenic microbes? (For example, using  L. sakei to treat chronic sinusitis) BacteriophagesEssential oils? The following is a wonderful article about another possibility: ethnobotany - the use of medicinal plants. Cassandra Quave is the ethnobotanist based at Emory University discussed in the article. From the New York Times:

Could Ancient Remedies Hold the Answer to the Looming Antibiotics Crisis?

Ethnobotany is a historically small and obscure offshoot of the social sciences, focused on the myriad ways that indigenous peoples use plants for food, shelter, clothing, art and medicine. Within this already-tiny field, a few groups of researchers are now trying to use this knowledge to derive new medicines, and Quave has become a leader among them. Equally adept with a pipette and a trowel, she unites the collective insights of traditional plant-based healing with the rigor of modern laboratory experiments. Over the past five years, Quave has gathered hundreds of therapeutic shrubs, weeds and herbs and taken them back to Emory for a thorough chemical analysis.

No single strategy is likely to be sufficient, but ethnobotany offers a few distinct advantages. Instead of relying on random screenings of living creatures — an arbitrary scoop of soil or seawater — it is the only strategy that benefits from a pre-made guide to some of nature’s most potent drugs, honed by thousands of years of trial and error in traditional medicine. And as far as organic drug factories go, it’s difficult to beat the complexity and ingenuity of plants. Plants are nature’s chemical wizards. If a plant finds itself in an unfavorable situation — feasted on by pests, ignored by pollinators — it cannot kick up its roots and relocate. Instead, plants regulate the chemistry of their environment, perpetually suffusing the ground, air and their own tissues with molecular cocktails and bouquets intended to increase their chances of survival and reproduction.

Botanical medicine, Quave learned, not only predates civilization — it is older than humanity itself. Many animals appear to self-medicate with plants: In Panama, members of the raccoon family known as coatis rub minty tree resin through their fur to deter fleas, ticks and lice, and some great apes and monkeys swallow mildly toxic leaves seemingly to fight infestations of parasitic worms. Our earliest human ancestors continued such traditions, and until relatively recently, plants were our primary source of medicine....Between 50 and 70 A.D., while traveling with Emperor Nero’s armies, the Greek surgeon Dioscorides learned how to make balms, elixirs and anesthetics from about 600 plants, like peppermint, hemlock and cannabis. He published his findings in a pharmacopoeia eventually known as “De Materia Medica,” a standard reference for the next 1,500 years.

It was not until the late 19th century — as medical knowledge advanced and appreciation for indigenous cultures increased — that ethnobotany as a formal discipline began to take shape. Starting in 1941, the American biologist Richard E. Schultes, often regarded as the father of modern ethnobotany, spent 12 years living alongside indigenous peoples in the northwest Amazon Basin, participating in their rituals and ingesting numerous therapeutic and psychoactive plants. After returning to America, he trained several generations of ethnobotanists at Harvard University, some of whom are leaders in the field today.

Although ethnobotany and the longstanding co-evolution with plants that preceded it have provided us with some of our most essential medicines, their purified and generic final forms are so divorced from their origins that most of us are oblivious to this immense botanical debt. Aspirin is based on a compound found in the perennial herb meadowsweet; pseudoephedrine was inspired by the use of the dryland shrub Ephedra sinica in traditional Chinese medicine; morphine, codeine, thebaine and other opiates are still made from poppies; and many anticancer drugs come from plants, like vincristine and vinblastine, both extracted from the Madagascar periwinkle. As of 2003, at least 25 percent of modern medicines were derived from plants, yet only a tiny fraction of the estimated more than 50,000 medicinal plants used around the globe have been studied in the lab.

Around the globe, as people continue to abandon the countryside for urban areas, such botanical cures are increasingly forgotten or dismissed as old wives’ tales — and certainly some of them are. But to dismiss all of them, Quave thinks, would be a terrible oversight. “We’re showing it isn’t witchcraft or voodoo medicine,” she says. “It actually has some biological function.” In southern Italy, Quave discovered that healers use elmleaf blackberry to treat boils and abscesses..... When they added different combinations of blackberry molecules to brothy wells of MRSA — a particularly antibiotic-resistant species of Staphylococcus bacteria — the botanical extracts did not kill the microbes as typical antibiotics do. Rather, they prevented the bacteria from forming slimy, intractable mats called biofilms, which allow them to adhere to living tissues and medical devices like catheters in hospitals.

And that, Quave says, is exactly the kind of antibiotic that can foil the evolution of resistance. A few lone bacteria drifting about are not particularly worrisome. It’s when pathogenic microbes team up that they become a greater threat. Bacteria rely on a form of chemical communication known as quorum-sensing: When they form a critical mass, they start churning out toxins, exchanging genes for antibiotic resistance and protecting themselves with a thick shell of sugar molecules that are impermeable to many drugs. But if an antibiotic could disrupt bacteria’s ability to collaborate, instead of killing them outright, it could render them more vulnerable and “sidestep resistance,” as Quave puts it. “It’s like a magician’s trick. You’re distracting the bacteria, saying, ‘Look over here!’ Meanwhile your own immune system can clear away the microbes.” Because such an antibiotic would not be directly responsible for the microbes’ death, there would be much weaker evolutionary pressure to develop resistance against it. “Ever since Fleming discovered penicillin, we’ve been in the mind-set that we need to kill microbes,” Quave says. “What we need to do is find a balance.

Recently, Quave and her research team have discovered that an extract of Brazilian peppertree berries — an invasive species common in many warmer parts of the United States — prevents MRSA from forming skin lesions in mice and shrinks biofilms formed by the bacteria. “I really believe these kind of inhibitors are a major part of the solution to antibiotic resistance,” Quave says. “We can shut down bacteria’s most dangerous machinery without killing them.” She envisions using such drugs as prophylactics in surgeries with a high infection risk, or in combination with other antimicrobials if a serious infection is already established.

Given such promise and the desperate need for new antibiotics, you might think that the path from lab to pharmacy would be expedient. It is anything but. In many cases, plant-based remedies work best as complex mixtures of many distinct molecules, as opposed to a highly refined one- or two-molecule extract. In the past decade, the Food and Drug Administration has approved just two commercial botanical drugs: Veregen, a medley of green-tea-leaf compounds used to treat genital warts, and Fulyzaq, an antidiarrheal derivative of tree resin with so many molecular constituents that some remain unidentified. Despite these successes, there is continued opposition in the pharmaceutical industry to developing complex botanicals because they are perceived as too messy and too difficult to evaluate and standardize for mass production. University scientists often rely on drug companies to fund the costly and time-consuming clinical trials required for approval from the F.D.A., and major pharmaceutical companies have little interest in antibiotics. If a candidate antibiotic is some motley herbal treatment — if it has the whiff of mumbo-jumbo folklore — the opposition is stronger still.

The difficulties don’t end with regulators. Per the ethics of their field, ethnobotanists would also need to ensure that some of the profits from drug sales reach the people who originally developed a traditional botanical remedy. In 1992, more than 150 governments signed the Convention on Biological Diversity, a treaty establishing that nations retain sovereign rights over their indigenous medicines and that such resources should be shared only after mediation of equitable benefits. 

But above all else, the apathy of the pharmaceutical industry remains the biggest immediate roadblock. “The odds are sometimes disheartening,” she admits. “But this is my field, and I’m not going to abandon ship because today the market is not supporting antibiotic research. In the near future they’ll have to. Western medicine will stop without antibiotics.” Consider, for instance, that over the past eight years, Thailand, Cambodia and other Asian countries have reported increasingly common cases of artemisinin-resistant malaria. Yet a recent study demonstrates that feeding rodents sweet wormwood leaves in their entirety — as opposed to a synthesized derivative — overcomes this resistance. The modern, stripped-down version of this ancient medicine may very well sacrifice some beneficial chemical synergy present in the whole plant.

Image result for elmleaf blackberry, wikipedia Elmleaf blackberry  Credit:Wikipedia

Clustered Berries and Green Leaves of a Brazilian Pepper-Tree Brazilian peppertree Credit:Dr. Roy Winkelman

Image result for household dust Ten chemicals suspected or known to harm human health are present in more than 90% of U.S. household dust samples, according to a new study. The research adds to a growing body of evidence showing the dangers posed by exposure to chemicals we are exposed to on a daily basis. The chemicals come from a variety of household goods, including toys, cosmetics, personal care products, furniture, electronics, nonstick cookware, food packaging, floor coverings, some clothing (e.g., stain resistant), building materials, and cleaning products. How do the chemicals get into the dust? The chemicals can leach, migrate, abrade, or off-gas from the products, which winds up in the dust and  results in human exposure. (That's right:  vacuum a lot and wash your hands a lot, and try to avoid or cut  back use of products with these chemicals,)

What was found in the dust? The main chemicals were: phthalates — a group of chemicals that includes DEP, DEHP, DNBP and DIBP (these were present in the highest concentrations),  highly fluorinated chemicals (HFCs), flame retardants (both old and newer replacement ones), synthetic fragrances, and phenols. These chemicals are known to have various adverse health effects, including endocrine disruption, cancer, neurological, immune, and developmental effects. (See posts on endocrine disruptors and flame retardants) Studies typically study one chemical at a time, but household dust contains MIXTURES of these chemicals with effects unknown. How does it get into us? Inhalation, ingestion, and through skin contact. And while the levels we are exposed to may be low, research is showing that even low level exposure can have adverse health effects. From Medical Xpress:

Potentially harmful chemicals widespread in household dust

Household dust exposes people to a wide range of toxic chemicals from everyday products, according to a study led by researchers at Milken Institute School of Public Health at the George Washington University. The multi-institutional team conducted a first-of-a-kind meta-analysis, compiling data from dust samples collected throughout the United States to identify the top ten toxic chemicals commonly found in dust. They found that DEHP, a chemical belonging to a hazardous class called phthalates, was number one on that list. In addition, the researchers found that phthalates overall were found at the highest levels in dust followed by phenols and flame retardant chemicals....."The findings suggest that people, and especially children, are exposed on a daily basis to multiple chemicals in dust that are linked to serious health problems."

Chemicals from consumer products are released into the air and get into dust, which can settle on household items or on the floor. People can inhale or ingest small particles of dust or even absorb them through the skin. Infants and young children are particularly at risk for exposure to the chemicals found in dust because they crawl, play on dusty floors, and put their hands in their mouths, the authors say.

Zota and colleagues pooled data from 26 peer-reviewed papers and one unpublished dataset that analyzed dust samples taken from homes in 14 states. They found 45 potentially toxic chemicals that are used in many consumer and household products such as vinyl flooring, personal care and cleaning products, building materials and home furnishings. The meta-analysis combines information from smaller dust studies and thus offers solid conclusions with greater statistical power, the authors say. The team found that:

  • Ten harmful chemicals are found in ninety percent of the dust samples across multiple studies, including a known cancer-causing agent called TDCIPP. This flame retardant is frequently found in furniture, baby products and other household items.
  • Indoor dust consistently contains four classes of harmful chemicals in high amounts. Phthalates, substances that are used to make cosmetics, toys, vinyl flooring, and other products, were found in the highest concentration with a mean of 7,682 nanograms per gram of dust-an amount that was several orders of magnitude above the others. Phenols, chemicals used in cleaning products and other household items, were the number two highest chemical class followed by flame retardants and highly fluorinated chemicals used to make non-stick cookware.
  • Chemicals from dust are likely to get into young children's bodies. A flame retardant added to couches, baby products, electronics and other products, TCEP, had the highest estimated intake followed by four phthalates—DEP, DEHP, BBzP and DnBP. The intake numbers in this study probably underestimate the true exposure to such chemicals, which are also found in products on the drug store shelf and even in fast food the authors say.
  • Phthalates such as DEP, DEHP, DNBP, and DIBP, are not only found at the highest concentrations in dust but are associated with many serious health hazards. Phthalates are thought to interfere with hormones in the body and are linked to a wide range of health issues including declines in IQ and respiratory problems in children.
  • Highly fluorinated chemicals such as PFOA and PFOS are also high on the potential harm scale. These types of chemicals, which are found in cell phones, pizza boxes, and many non-stick, waterproof and stain-resistant products have been linked to numerous health problems of the immune, digestive, developmental and endocrine systems.
  • Small amounts can add up. Many of the chemicals in dust are linked to the same health hazards, such as cancer or developmental and reproductive toxicity, and may be acting together. Exposure to even small amounts of chemicals in combination can lead to an amplified health risk, especially for developing infants or young children, the authors say.

In the meantime, consumers who want to reduce their exposure to chemicals in household dust and the environment around them can take a few simple steps such as keeping dust levels low by using a strong vacuum with a HEPA filter; washing hands frequently; and avoiding personal care and household products that contain potentially dangerous chemicals.

From the original study in Environmental Science and Technology: Consumer Product Chemicals in Indoor Dust: A Quantitative Meta-analysis of U.S. Studies

Indoor dust is a reservoir for commercial consumer product chemicals, including many compounds with known or suspected health effects. However, most dust exposure studies measure few chemicals in small samples. We systematically searched the U.S. indoor dust literature on phthalates, replacement flame retardants (RFRs), perfluoroalkyl substances (PFASs), synthetic fragrances, and environmental phenols and estimated pooled geometric means (GMs) and 95% confidence intervals for 45 chemicals measured in ≥3 data sets. In order to rank and contextualize these results, we used the pooled GMs to calculate residential intake from dust ingestion, inhalation, and dermal uptake from air, and then identified hazard traits from the Safer Consumer Products Candidate Chemical List. Our results indicate that U.S. indoor dust consistently contains chemicals from multiple classes. Phthalates occurred in the highest concentrations, followed by phenols, RFRs, fragrance, and PFASs. Several phthalates and RFRs had the highest residential intakes. We also found that many chemicals in dust share hazard traits such as reproductive and endocrine toxicity

People in developed countries spend more than 90% of their time in indoor environments, creating an important link between indoor environmental quality and public health. Consumer products and building materials including furniture, electronics, personal care and cleaning products, and floor and wall coverings contain chemicals that can leach, migrate, abrade, or off-gas from products resulting in human exposure. Consequently, chemicals such as phthalates, phenols, flame retardants, and polyfluorinated alkyl substances (PFASs) are widely detected in the U.S. general population, including vulnerable populations such as pregnant women and children. Exposure to one or more of these chemical classes has been associated with adverse health effects including reproductive toxicity, endocrine disruption, cognitive and behavioral impairment in children, cancer, asthma, immune dysfunction, and chronic disease.

This is similar to what Dr. Gilbert Welch and others have been saying for a while - that studies show much cancer screening leads to overdiagnosis and overtreatment with no real differences in rates of mortality (death). Which was the whole point of cancer screening - to catch cancers early and so reduce rates of death. (For more on this topic see here, here, here, and here.) There are harms from overtreatment (unnecessary treatment), and with prostate cancer treatment there can be adverse effects on sexual (erectile dysfunction) , urinary, or bowel function, and sometimes even death from surgery. Remember that many prostate cancers are "indolent" or very slow growing, and may remain asymptomatic throughout the man's lifetime. Currently the U.S. Preventive Services Task Force (USPSTF) recommends against prostate-specific antigen (PSA)-based screening for prostate cancer for these reasons.

This study in the New England Journal of Medicine reported on men diagnosed with prostate cancer, with the men then assigned to either monitoring or treatment (surgery or radiation), and then followed for 10 years. Much to the researchers' surprise, the survival rates from prostate cancer were equally high in all the groups - 99%. Now, as the researchers themselves point out - the groups of men need to be followed for more years. Will there be differences after 15 or 20 years? Also, if there is prostate cancer progression in the monitored group (and more men did have disease progression in this group after 10 years, even though the numbers were low), can it still be treated just as successfully? More studies are needed. Note that there was cancer progression among some men even in both treatment groups.

Other important prostate cancer studies are also needed. Are there differences among those men for whom cancer progresses and for those that it doesn't? Does intense exercise make a difference (as some think)? Dietary differences, such as a plant based diet? Body fat or weight? From Science Xpress: Treat or monitor early prostate cancer? 10-yr survival same

Men with early prostate cancer who choose to closely monitor their disease are just as likely to survive at least 10 years as those who have surgery or radiation, finds a major study that directly tested and compared these options. Survival from prostate cancer was so high—99 percent, regardless of which approach men had—that the results call into question not only what treatment is best but also whether any treatment at all is needed for early-stage cases. And that in turn adds to concern about screening with PSA blood tests, because screening is worthwhile only if finding cancer earlier saves lives.

The study involved more than 82,000 men in the United Kingdom, aged 50 to 69, who had tests for PSA, or prostate specific antigen. High levels can signal prostate cancer but also may signal more harmless conditions, including natural enlargement that occurs with age. Researchers focused on the men diagnosed with early prostate cancer, where the disease is small and confined to the prostate. Of those men, 1,643 agreed to be randomly assigned to get surgery, radiation or active monitoring. That involves blood tests every three to six months, counseling, and consideration of treatment only if signs suggested worsening disease.

A decade later, researchers found no difference among the groups in rates of death from prostate cancer or other causes. More men being monitored saw their cancers worsen—112 versus 46 given surgery and 46 given radiation. But radiation and surgery brought more side effects, especially urinary, bowel or sexual problems....PSA testing remains popular in the U.S. even after a government task force recommended against it, saying it does more harm than good by leading to false alarms and overtreatment of many cancers that would never threaten a man's life. In Europe, prostate cancer screening is far less common.

From the original study in the The New England Journal of Medicine: 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer

The comparative effectiveness of treatments for prostate cancer that is detected by prostate-specific antigen (PSA) testing remains uncertain.  In the United States alone, an estimated 180,890 cases will be diagnosed in 2016, and 26,120 men will die from the disease.1 The widespread use of PSA testing has resulted in a dramatic increase in the diagnosis and treatment of prostate cancer, but many men do not benefit from intervention because the disease is either indolent or disseminated at diagnosis. Prostate cancer often progresses slowly, and many men die of competing causes. In addition, interventions for prostate cancer can have adverse effects on sexual, urinary, or bowel function. Two treatment trials have evaluated the effectiveness of treatment, but they did not compare the most common contemporary methods: surgery, radiotherapy, and monitoring or surveillance

We compared active monitoring, radical prostatectomy, and external-beam radiotherapy for the treatment of clinically localized prostate cancer. Between 1999 and 2009, a total of 82,429 men 50 to 69 years of age received a PSA test; 2664 received a diagnosis of localized prostate cancer, and 1643 agreed to undergo randomization to active monitoring (545 men), surgery (553), or radiotherapy (545). The primary outcome was prostate-cancer mortality at a median of 10 years of follow-up. Secondary outcomes included the rates of disease progression, metastases, and all-cause deaths.

There were 17 prostate-cancer–specific deaths overall: 8 in the active-monitoring group (1.5 deaths per 1000 person-years; 95% confidence interval [CI], 0.7 to 3.0), 5 in the surgery group (0.9 per 1000 person-years; 95% CI, 0.4 to 2.2), and 4 in the radiotherapy group (0.7 per 1000 person-years; 95% CI, 0.3 to 2.0); the difference among the groups was not significant (P=0.48 for the overall comparison). In addition, no significant difference was seen among the groups in the number of deaths from any cause (169 deaths overall; P=0.87 for the comparison among the three groups). Metastases developed in more men in the active-monitoring group (33 men; 6.3 events per 1000 person-years; 95% CI, 4.5 to 8.8) than in the surgery group (13 men; 2.4 per 1000 person-years; 95% CI, 1.4 to 4.2) or the radiotherapy group (16 men; 3.0 per 1000 person-years....). Higher rates of disease progression were seen in the active-monitoring group (112 men; 22.9 events per 1000 person-years; 95% CI, 19.0 to 27.5) than in the surgery group (46 men; 8.9 events per 1000 person-years; 95% CI, 6.7 to 11.9) or the radiotherapy group (46 men; 9.0 events per 1000 person-years....).

At a median of 10 years, prostate-cancer–specific mortality was low irrespective of the treatment assigned, with no significant difference among treatments. Surgery and radiotherapy were associated with lower incidences of disease progression and metastases than was active monitoring.