Tag Archives: antimicrobials

 This week a forceful statement paper was issued by more than 200 hundred scientists and health professionals expressing serious concerns about triclosan and triclocarban. This statement, called The Florence Statement on Triclosan and Triclocarban, asked that the use of these widely used antimicrobials be restricted due to their risks to human health, to wildlife, and its accumulation in water, land, wildlife, and humans. They stated that the negatives outweigh any benefits, and they also questioned the use of other antimicrobials (because they also have similar health and environmental concerns).

Not only do triclosan and triclocarban persist in the environment, they are also a source of toxic and carcinogenic compounds including dioxins, chloroform, and chlorinated anilines. They are endocrine disruptors that bioaccumulate (build-up) in humans and wildlife. They are toxic to aquatic and other organisms, yet they are found in the majority of people and freshwater streams. In other words, the chemicals are all around us and in us!

More than 2000 personal and consumer products, as well as building materials, contain triclosan and triclocarban. For example, they are found in soaps, toothpastes, detergents, clothing, toys, carpets, plastics, kitchen items, and paints. But the U.S. Centers for Disease Control and Prevention Healthcare Infection Control Practices Advisory Committee have concluded, “No evidence is available to suggest that use of [antimicrobial-impregnated articles and consumer items bearing antimicrobial labeling] will make consumers and patients healthier or prevent disease”. According to the FDA, which is responsible for regulation of foods, drugs, cosmetics, medical devices, and similar products, there is no evidence that antibacterial soaps are more effective than nonantibacterial soap and water. So why is it in so many products? It's a marketing gimmick!

What should one do? Read labels and avoid products containing triclosan, triclocarban, or anti-microbials, and products labeled anti-odor, antibacterial, or anti-germ. No, you don't need antibacterial or anti-odor socks or cutting boards! See earlier posts on this topic (here, here, and here). From Environmental Health News:

Hundreds of scientists call for caution on anti-microbial chemical use

Two ingredients used in thousands of products to kill bacteria, fungi and viruses linger in the environment and pose a risk to human health, according to a statement released today by more than 200 scientists and health professionals. The scientists say the possible benefits in most uses of triclosan and triclocarban—used in some soaps, toothpastes, detergents, paints, carpets—are not worth the risk.

The statement, published today in the Environmental Health Perspectives journal, urges “the international community to limit the production and use of triclosan and triclocarban and to question the use of other antimicrobials.” They also call for warning labels on any product containing triclosan and triclocarban and for bolstered research of the chemicals' environmental toll.

The statement says evidence that the compounds are accumulating in water, land, wildlife and humans is sufficient to merit action. The chemicals are used to kills microbes such as bacteria and viruses that make people ill. However, both chemicals affect animals’ hormone systems, causing reproductive and development problems.  And there is nascent evidence that the impacts may extend to humans as well—having been linked to reduced growth of fetuses, earlier births, and lower head circumference in boys at birth.

U.S. manufacturers are phasing out triclosan from hand soaps after the Food and Drug Administration banned it last year amid concerns that the compound disrupted the body's hormone systems. The FDA noted in the restriction that antibacterial hand soaps were no more effective than non-antibacterial soap and water at preventing illness. .... More worrisome, Lindeman said some manufactures of personal care products are simply substituting other antimicrobials for triclosan—some of which may pose the same risks to people and the environment. Because of the widespread use, most people have some levels of triclosan in them. A 2008 study of U.S. residents found it in the urine of about 75 percent of people tested.

Once the compounds get into the environment, they don’t readily go away.  Researchers have detected triclosan and triclocarban in water and sediment all over the world—including drinking water, oceans and streams. The U.S. Geological Survey found triclosan in 60 percent of U.S. streams. Studies have shown triclosan toxic to some algae, fish and other crustaceans.

The compounds impact hormones in animal studies. And there’s evidence that they may do the same to developing babies. Properly functioning hormones are critical for babies’ proper development. Last month Brown University researchers reported that mothers’ triclosan exposure during pregnancy was linked to lower birth weights, smaller heads and earlier births. ...In addition to endocrine disruption concerns, Lindeman and other signers outline two other potential human health impacts from exposure to triclosan: heightened sensitivity to allergens, and antibiotic resistance. Large studies of children in the United States and Norway have linked triclosan to allergies and worsening asthma. And there is evidence bacteria that develop resistance to triclosan also become resistant to other antibacterial compounds.

 Stop using the damn antibacterial products! Yes, stop using stuff that says "antibacterial", "antimicrobial", "germ-killing",  or "anti-odor". Whether in personal care items, or bedding, or socks, or hand wipes, or wherever else you see those labels - don't buy them and try to avoid using them. Plain soap works just as well for cleaning hands (see FDA page). The "antibacterial" chemicals in soaps, toothpastes, body washes, etc. are absorbed by the body where they may do harm. Yes - HARM. The harms may not be known initially, but over and over, at some later point, the various chemicals are shown to cause harm - whether in humans or the environment, or both.

A case in point is the antimicrobial triclosan. It has been used for years in soooo many products, and religiously used by those concerned with "killing germs". It is now finally banned by the FDA from soaps and body washes because of the harms it causes. These include various health effects - and also because it's an endocrine disruptor (disrupts hormones).  And yes, it also crosses the placenta and has been associated with effects on the developing baby. For example, a recent study found an "inverse relationship" - that higher levels of triclosan in the mothers' urine during pregnancy (meaning they had used and absorbed more triclosan products) were associated with lower birth weight, length, head circumference, and gestational age (length of pregnancy). Of special concern to us at Lacto Bacto is that it also disrupts our microbes - remember that antimicrobial products (whether Triclosan in soap or antibiotics) kill off both beneficial and harmful bacteria.

As a recent study shows - triclosan is absorbed by pregnant women (and can be measured in their urine) and, it is absorbed and found in the urine of children who washed their hands or brushed their teeth with products containing triclosan.  And the higher the socioeconomic status, the more triclosan in the body - after all, people pay a premium for products that are "antimicrobial". While triclosan is now banned from being used in certain products (soaps and body washes), it is still allowed in many, many other products. And there are all those other antimicrobials that also should NOT be used. So please read the labels, especially the ingredient lists, and try to avoid antimicrobial, antibacterial, germ-killing, and anti-odor products. From Environmental health News:

Hygiene leaves kids with loads of triclosan

Levels of a controversial chemical meant to kill bacteria spike in the bodies of young children after they brush their teeth or wash their hands, according to a new study. U.S. manufacturers are phasing triclosan out of hand soaps after the Food and Drug Administration banned it effective last year amid concerns that the compound disrupted the body's hormone systems. It remains in Colgate Total toothpaste, some cleaning products and cosmetics. Health experts say exposure is best avoided for babies in the womb and developing children.

The latest study, published in the journal Environmental Science & Technology, is one of the first to show that children’s levels rise through their first few years of life. Hand washing and teeth brushing have speedy, significant impact on levels, the researchers found. Braun and colleagues tested the urine of 389 mothers and their children from Cincinnati, collecting samples from the women three times during pregnancy and from the children periodically between 1 and 8 years old.

They found triclosan in more than 70 percent of the samples. Among 8 year olds, levels were 66 percent higher in those that used hand soap. And more washing left the children with higher loads—those who reported washing their hands more than five times per day had more than four times the triclosan concentrations than those washing once or less per day. Children who had brushed their teeth within the last day had levels 2.5 times higher than those who had a toothpaste-free 24-hour span.

Braun said the levels of triclosan rose as the children aged, eventually leveling off. “Their levels were almost to moms’ levels by the time they reached 5 to 8 years of age.” This, he said, is likely due to more frequent use of personal care products as the kids aged. Despite the hand soap ban, triclosan remains on the market because it is effective at fighting plaque and gingivitis. Colgate uses 0.3 percent of the antibacterial to “fight harmful plaque germs.”.

Braun, however, said there is “quite compelling” evidence from animal studies that triclosan decreases thyroid hormone levels. Properly functioning thyroid hormones are critical for brain development. Just last month, using the same mothers and children, Braun and others reported that mothers’ triclosan exposure during pregnancy was linked to lower birth weights, smaller heads and earlier births. In addition, Pessah and colleagues reported triclosan hinders proper muscle development. The researchers used mice and fish, finding that triclosan affects the process responsible for muscle contraction.

Image result for Klebsiella pneumoniae bacteria A few days ago the CDC (Centers for Disease Control and Prevention) released a report about a Nevada woman who died in August 2016 of a bacterial infection that was resistant to all 26 antibiotics available in the US, including the antibiotic of last resort - colistin. Apparently she had picked up the bacterial infection in India, where she been staying for an extended visit and where she had been hospitalized (a fractured leg, which led to a hip infection). Because of the antibiotic resistance, the infection spread, and she went into septic shock and died.

India has soaring rates of antibiotic resistance due to misuse of antibiotics (or antimicrobials). But this is not just a problem with infections acquired in India, but throughout the world. Antibiotic resistance is increasing everywhere (post with video of how superbugs evolve). This is because bacteria are constantly evolving against the antibiotics they're exposed to. We may reach a point where simple cuts or infections could lead to death because no antibiotics will work. The World Health Organization said in a 2014 report that: "The problem is so serious that it threatens the achievements of modern medicine. A post-antibiotic era—in which common infections and minor injuries can kill—far from being an apocalyptic fantasy, is instead a very real possibility for the twenty-first century."

New antibiotic development is not keeping pace with the emergence of new antibiotic resistant bacteria. According to the CDC: "Each year in the United States, at least 2 million people become infected with bacteria that are resistant to antibiotics and at least 23,000 people die each year as a direct result of these infections." On top of that, too few antibiotics are under development, and those antibiotics tend to be developed by small companies, not the big pharmaceutical companies. Farmers are still giving antibiotics (antimicrobials) to farm animals unnecessarily, typically as "growth promoters" or to try to prevent disease. The sale of antibiotics routinely fed to animals has been increasing in recent years, and currently about 80% of all antibiotics used in the US are given to livestock animals (of which nearly 70 percent of those used are considered “medically important” for humans).

Excerpts from The Atlantic: A Woman Was Killed by a Superbug Resistant to All 26 American Antibiotics

Yesterday morning, I published a story about the silent spread of resistance against the antibiotic of last resort, colistin—a major step toward the emergence of a superbug resistant to all antibiotics. While reporting this story, I interviewed Alex Kallen, an epidemiologist at the CDC, and I asked if anyone had found such a superbug yet. “Funny you should ask,” he said.

Funny—by which we all mean scary—because yesterday afternoon, the CDC also released a report about a Nevada woman who died after an infection resistant to 26 antibiotics, which is to say all available antibiotics in the U.S. The woman, who was in her 70s, had been previously hospitalized in India after fracturing her leg, eventually which led to an infection in her hip. There was nothing to treat her infection—not colistin, not other last-line antibiotics. Scientists later tested the bacteria that killed her, and found it was somewhat susceptible to fosfomycin, but that antibiotic is not approved in the U.S. to treat her type of infection.

The woman was isolated so that her superbug would not infect other patients in the hospital. And subsequent samples from other patients near her in the hospital have not turned it up. If this superbug is somehow gone from the hospital and gone from the U.S., that would be great news. But even if so, other pan-resistant superbugs are likely to emerge.

Here’s why: The most worrisome kind of colistin resistance is caused by a single gene called mcr-1....What makes mcr-1 special is that sits on a loop of free-floating DNA called a plasmid, which bacteria of different species can pass back and forth. And there are many plasmids out there with genes that confer resistance to this or that class of antibiotics. Where might bacteria go to hang out and swap plasmids? Well your gut is a big bag of bacteria. One day, you might pick up some bacteria with a plasmid carrying resistance to colistin. Years later, you might pick up some bacteria with a plasmid carrying resistance to carbapenems. And so. They start swapping plasmids. All this time you are healthy, and these bacteria just lurk in your gut, not causing much trouble. Then you get sick, your immune system is down, and you take antibiotics for an infection. The antibiotics kill everything but the resistant bacteria, which have by now collected all the resistance genes and no competition. That’s how you get a pan-resistant infection.

An interesting small study of the human armpit bacterial community. From Real Clear Science:

Antiperspirants Alter Your Armpit Bacteria and Could Actually Make You Smell Worse

In modern society, antiperspirants are widely hailed as a godsend, dispelling the inconvenient odors wafting from armpits everywhere. But a new study casts doubts on their vaunted position. As it turns out, antiperspirants may actually make you smell worse in the long run.

For 90% of all Americans, slathering on deodorants and antiperspirants is a daily occurrence, a precautionary measure against foul odors and unsightly sweat stains. The odors arise when bacteria living in our armpits break down lipids and amino acids excreted in sweat into more smelly substances. Deodorants employ antimicrobial agents that kill off bacteria, as well as chemicals that replace noxious odors with pleasant aromas. Deodorants that double as antiperspirants, like Degree, Old Spice, and Dove, take the process one step further by physically plugging sweat glands with aluminum-based compounds.

While most of us might only concern ourselves with the dry, aromatic benefits of antiperspirants and deodorants, researchers at the Laboratory of Microbial Ecology and Technology at the University of Ghent in Belgium are more interested in the effects on bacteria. Billions of bacteria dwell in the "rain forests" under our arms, and the substances we don are mucking with their habitats!

To uncover how deodorants and antiperspirants affect armpit bacteria, Chris Callewaert, a Ph.D student specializing in microbial ecology, and a team of researchers recruited eight subjects for a task a great many people (and especially their friends) might deem unbearable: Six males and two females pledged not to use deodorant or antiperspirant for an entire month. Specifically, four subjects stopped using their deodorants and another four stopped using their antiperspirant deodorant. (Most antiperspirants are also deodorants. See image below for an example.) Another control subject who did not regularly use either was asked to use deodorant for a month. The duration was chosen because it takes approximately 28 days for a new layer of skin cells to form.

The researchers analyzed the diversity and abundance of subjects' armpit bacteria at various timepoints before they stopped using antiperspirant, during the period of abstaining from antiperspirant, and for a few weeks after resuming the use of antiperspirant. Switching hygiene habits plainly altered the armpit bacterial communities of every subject. Since no two armpits and their resident bacteria are identical, it was difficult to pinpoint precise changes brought about by deodorants or antiperspirants, but one clear trend did materialize: antiperspirants resulted in a clear increase of Actinobacteria.

You might not recognize the name of Actinobacteria, but chances are, you've smelled them. Dominated by Corynebacterium, they are the major instigators of noxious armpit odor. Other microbes that inhabit the armpit, like Firmicutes and Staphylococcus, don't produce odors as quickly, nor are those odors nearly as pungent.

Callewaert believes the aluminum compounds in antiperspirants may be to blame, killing off "good," less smelly bacteria and allowing "bad" bacteria to dominate. His study found that deodorants which lack these sweat-blocking antiperspirant compounds are actually linked to a slight decrease of stinky Actinobacteria.

Though antiperspirants and deodorants are widely used, they are only a temporary fix."The measures we utilize today do not take away the initial source: the odor causing bacteria," Callewaert told RealClearScience. "Deodorants only mask unpleasant odors. We can do better than that. The follow up of this research is finding better solutions."

And Callewaert is already working on one: "armpit bacterial transplantation"."We take away the bad bacteria from the armpit of somebody with a body odor, and replace it with the good bacteria of a relative who doesn't have a body odor," he explained."So far we have helped over 15 people. For most subjects it brings immediate improvements. Most of them on a permanent time scale, although there are also people who suffer again from a body odor after some months."

The bottom line is to read the ingredients list on products, and avoid all products labeled "antimicrobial" or "antibacterial" (because those are the ones typically containing triclosan and triclorocarban). Over 2000 products contain antibacterial compounds. I've even seen them in pillows, pillow protectors, mattress pads, dish racks, toys, and blankets! As we know from the latest microbiology research, we need to cultivate a healthy microbiome, and not throw it out of whack by continuously trying to kill off all bacteria. From The Atlantic:

It's Probably Best to Avoid Antibacterial Soaps

Antimicrobial chemicals are so ubiquitous that a recent study found them in pregnant mothers' urine and newborns' cord blood. Research shows that their risks may outweigh their benefits.

Antimicrobial chemicals, intended to kill bacteria and other microorganisms, are commonly found in not just soaps, but all kinds of products—toothpaste, cosmetics, and plastics among them. There is evidence that the chemicals aren’t always effective, and may even be harmful, and their ubiquity means people are often continually exposed to them.

One such chemical, triclosan, has previously been found in many human bodily fluids. New research found traces of triclosan, triclocarban, and butyl paraben in the urine of pregnant women, and the cord blood of newborn infants. 

The research looked at the same population of 180 expectant mothers living in Brooklyn, New York, most of Puerto Rican descent. In a study published last week in Environmental Science and Technology, researchers from Arizona State University and State University of New York’s Downstate School of Public Health found triclosan in 100 percent of the women’s urine samples, and triclocarban in 87 percent of the samples. Of the 33 cord blood samples they looked at, 46 percent contained triclosan and 23 percent contained triclocarban.

In another, still-unpublished study, the researchers found that all of the cord blood samples contained “at least one paraben,” according to Dr. Rolf Halden, director of ASU’s Center for Environmental Security. 

Triclosan and triclocarban are endocrine disruptors, Halden explains. The risk there is that the chemicals can mimic thyroid hormones, potentially disrupting the metabolism and causing weight gain or weight loss. Previous research has also shown a connection between higher levels of triclosan in urine, and allergy diagnoses in children.

In the study looking at butyl paraben, the researchers found an association between higher exposure to the chemical, and a smaller head circumference and length of babies after they were born.

The thing about antibacterial soaps (containing triclosan and triclocarban), is that there’s no evidence they are any better at keeping people from getting sick than regular old soap, according to the Food and Drug Administration. 

Butyl paraben is used as a preservative, so it’s found in a wider breadth of products, according to Halden. This isn’t entirely bad—it’s one of the chemicals that keeps things from growing in your tub of face lotion after you stick your grubby little fingers in it—but the question with any chemical is whether the benefits outweigh the risks. Antimicrobial chemicals, any potential risks to personal health aside, may also be contributing to the rise of drug-resistant bacteria.

From Science News:

Pregnant women, fetuses exposed to antibacterial compounds face potential health risks 

As the Food and Drug Administration mulls over whether to rein in the use of common antibacterial compounds that are causing growing concern among environmental health experts, scientists are reporting that many pregnant women and their fetuses are being exposed to these substances. The compounds are used in more than 2,000 everyday products marketed as antimicrobial, including toothpastes, soaps, detergents, carpets, paints, school supplies and toys, the researchers say.

The problem with this, explains Pycke, a research scientist at Arizona State University (ASU), is that there is a growing body of evidence showing that the compounds can lead to developmental and reproductive problems in animals and potentially in humans. Also, some research suggests that the additives could contribute to antibiotic resistance, a growing public health problem.

Although the human body is efficient at flushing out triclosan and triclocarban, a person's exposure to them can potentially be constant. "If you cut off the source of exposure, eventually triclosan and triclocarban would quickly be diluted out, but the truth is that we have universal use of these chemicals, and therefore also universal exposure," says Rolf Halden, Ph.D., the lead investigator of the study at ASU.