Skip to content

Much has been written about boxing, concussions, and brain damage, but this is the first time I've read about mixed martial art fighters also having such problems. But it makes sense. From Medscape:

Fight Exposure Linked to Reduced Brain Volume

The more boxers and martial arts practitioners experience head trauma, the more likely they are to have lower brain volume, particularly caudate and thalamus volume, according to a new study. Lower brain volume in these fighters correlated with reduced processing speed, the study also found.

These results "suggest that greater exposure to head trauma is related to detectable brain structural and performance deficits in active fighters," the authors, led by Charles Bernick, MD, Lou Ruvo Center for Brain Health, Cleveland Clinic, Las Vegas, Nevada, conclude.

The analysis included 224 adults, aged 18 to 44 years, who were participants in the Professional Fighters Brain Health Study, a longitudinal cohort study of boxers and mixed martial arts (MMA) fighters. The participants included 93 boxers and 131 MMA fighters.The length of professional fighting in this group ranged from 0 to 24 years, with a mean of 4 years. The number of professional fights ranged from 0 to 101, with a mean of 10 fights.

The study also included a control group of 22 age- and education-matched participants with no history of head trauma who did not play a sport associated with head injuries from high school onward.Participants were assessed at baseline and then annually for 4 years. Researchers measured cognitive function with a computer-based battery consisting of tests of  verbal memory, processing speed, and other functions. They used MRI to assess brain volumes.

The study found that increasing exposure to head trauma, as measured by the number of professional fights or years of professional fighting, was generally associated with lower brain structural volumes, particularly subcortical structures. The most consistent relationship between exposure variables and brain volume was seen in the thalamus and caudate

The thalamus acts as a "gateway" to the cortex and when affected can influence many neurologic functions, said the authors. It and the caudate are vulnerable to volumetric loss through several mechanisms. Rotational movement of the head brought on by punches in boxing or MMA can result in diffuse axonal injury in white matter tracts, they note.

For the most part, brain structure volumes were lower for boxers than MMA fighters or controls. This could be due to several factors, the authors write. "Perhaps the most obvious explanation is that boxers get hit in the head more. In addition to trying to concuss (ie, knock out) their opponent, MMA fighters can utilise other combat skills such as wrestling and jiu jitsu to win their match by submission without causing a concussion."

The study also found that processing speed was correlated with reduced volume in several cortical and subcortical structures. Reduction in processing speed, said the authors, is consistent with repeated concussions and is considered a clinical component of chronic traumatic encephalopathy.

Very important research looking at some professional football players who started playing tackle football before the age of 12, and comparing them to those who started later. It discusses the issue of whether children should be playing tackle football before the age of 12 - these and other results suggest NOT. Wait till older (or don't play tackle at all).This article came from Boston University through Futurity:

Is This Kid Too Young For Football?

Researchers from Boston University School of Medicine found that former National Football League (NFL) players who participated in tackle football before the age of 12 are more likely to have memory and thinking problems as adults.

The study contradicts conventional wisdom that children’s more plastic brains might recover from injury better than those of adults, and suggests that they may actually be more vulnerable to repeated head impacts, especially if injuries occur during a critical period of growth and development. "

“This is one study, with limitations,” adds study senior author Robert Stern, a professor of neurology, neurosurgery, and anatomy and neurobiology and director of the Alzheimer’s Disease Center’s Clinical Core. “But the findings support the idea that it may not make sense to allow children—at a time when their brain is rapidly developing—to be exposed to repetitive hits to the head.

In the study, researchers reexamined data from Boston University’s ongoing DETECT(Diagnosing and Evaluating Traumatic Encephalopathy Using Clinical Tests) study, which aims to develop methods of diagnosing chronic traumatic encephalopathy (CTE) during life. CTE is a neurodegenerative disease often found in professional football players, boxers, and other athletes who have a history of repetitive brain trauma. It can currently be diagnosed only by autopsy.

For this latest study, published in the journal Neurology, scientists examined test scores of 42 former NFL players, with an average age of 52, all of whom had experienced memory and thinking problems for at least six months. Half the players had played tackle football before age 12, and half had not. Significantly, the total number of concussions was similar between the two groups.

Researchers found that the players exposed to tackle football before age 12 had greater impairment in mental flexibility, memory, and intelligence—a 20 percent difference in some cases. These findings held up even after statistically removing the effects of the total number of years the participants played football. Both groups scored below average on many of the tests.

Stamm says the researchers were especially surprised by the scores on a reading test called the WRAT-4, which has participants read words of increasing difficulty....The low scores may be significant, she says, because they suggest that repeated head trauma at a young age might limit peak intelligence. She emphasizes, however, that there may be other reasons for a low score, and that more research is needed.

The authors chose age 12 as the cutoff because significant peaks in brain development occur in boys around that age. (This happens for girls a bit earlier, on average.) Around age 12, says Stern, blood flow to the brain increases, and brain structures such as the hippocampus, which is critical for memory, reach their highest volume.

Boys’ brains also reach a peak in their rate of myelination—the process in which the long tendrils of brain cells are coated with a fatty sheath, allowing neurons to communicate quickly and efficiently. Because of these developmental changes, Stern says, this age may possibly represent a “window of vulnerability,” when the brain may be especially sensitive to repeated trauma.

Stern adds that a study by another group of researchers of the number and severity of hits in football players aged 9 to 12, using accelerometers in helmets, found that players received an average of 240 high-magnitude hits per season, sometimes with a force similar to that experienced by high school and college players.

With approximately 4.8 million athletes playing youth football in the United States, the long-term consequences of brain injury represent a growing public health concern. This study comes at a time of increasing awareness of the dangers of concussions—and subconcussive hits—in youth sports like football, hockey, and soccer. In 2012, Pop Warner football, the oldest and largest youth football organization in the country, changed its rules to limit contact during practices and banned intentional head-to-head contact. 

“Football has the highest injury rate among team sports,” writes Christopher M. Filley, a fellow with the American Academy of Neurology, in an editorial accompanying the Neurology article. “Given that 70 percent of all football players in the United States are under the age of 14, and every child aged 9 to 12 can be exposed to 240 head impacts during a single football season, a better understanding of how these impacts may affect children’s brains is urgently needed.”