Tag Archives: triclocarban

 This week a forceful statement paper was issued by more than 200 hundred scientists and health professionals expressing serious concerns about triclosan and triclocarban. This statement, called The Florence Statement on Triclosan and Triclocarban, asked that the use of these widely used antimicrobials be restricted due to their risks to human health, to wildlife, and its accumulation in water, land, wildlife, and humans. They stated that the negatives outweigh any benefits, and they also questioned the use of other antimicrobials (because they also have similar health and environmental concerns).

Not only do triclosan and triclocarban persist in the environment, they are also a source of toxic and carcinogenic compounds including dioxins, chloroform, and chlorinated anilines. They are endocrine disruptors that bioaccumulate (build-up) in humans and wildlife. They are toxic to aquatic and other organisms, yet they are found in the majority of people and freshwater streams. In other words, the chemicals are all around us and in us!

More than 2000 personal and consumer products, as well as building materials, contain triclosan and triclocarban. For example, they are found in soaps, toothpastes, detergents, clothing, toys, carpets, plastics, kitchen items, and paints. But the U.S. Centers for Disease Control and Prevention Healthcare Infection Control Practices Advisory Committee have concluded, “No evidence is available to suggest that use of [antimicrobial-impregnated articles and consumer items bearing antimicrobial labeling] will make consumers and patients healthier or prevent disease”. According to the FDA, which is responsible for regulation of foods, drugs, cosmetics, medical devices, and similar products, there is no evidence that antibacterial soaps are more effective than nonantibacterial soap and water. So why is it in so many products? It's a marketing gimmick!

What should one do? Read labels and avoid products containing triclosan, triclocarban, or anti-microbials, and products labeled anti-odor, antibacterial, or anti-germ. No, you don't need antibacterial or anti-odor socks or cutting boards! See earlier posts on this topic (here, here, and here). From Environmental Health News:

Hundreds of scientists call for caution on anti-microbial chemical use

Two ingredients used in thousands of products to kill bacteria, fungi and viruses linger in the environment and pose a risk to human health, according to a statement released today by more than 200 scientists and health professionals. The scientists say the possible benefits in most uses of triclosan and triclocarban—used in some soaps, toothpastes, detergents, paints, carpets—are not worth the risk.

The statement, published today in the Environmental Health Perspectives journal, urges “the international community to limit the production and use of triclosan and triclocarban and to question the use of other antimicrobials.” They also call for warning labels on any product containing triclosan and triclocarban and for bolstered research of the chemicals' environmental toll.

The statement says evidence that the compounds are accumulating in water, land, wildlife and humans is sufficient to merit action. The chemicals are used to kills microbes such as bacteria and viruses that make people ill. However, both chemicals affect animals’ hormone systems, causing reproductive and development problems.  And there is nascent evidence that the impacts may extend to humans as well—having been linked to reduced growth of fetuses, earlier births, and lower head circumference in boys at birth.

U.S. manufacturers are phasing out triclosan from hand soaps after the Food and Drug Administration banned it last year amid concerns that the compound disrupted the body's hormone systems. The FDA noted in the restriction that antibacterial hand soaps were no more effective than non-antibacterial soap and water at preventing illness. .... More worrisome, Lindeman said some manufactures of personal care products are simply substituting other antimicrobials for triclosan—some of which may pose the same risks to people and the environment. Because of the widespread use, most people have some levels of triclosan in them. A 2008 study of U.S. residents found it in the urine of about 75 percent of people tested.

Once the compounds get into the environment, they don’t readily go away.  Researchers have detected triclosan and triclocarban in water and sediment all over the world—including drinking water, oceans and streams. The U.S. Geological Survey found triclosan in 60 percent of U.S. streams. Studies have shown triclosan toxic to some algae, fish and other crustaceans.

The compounds impact hormones in animal studies. And there’s evidence that they may do the same to developing babies. Properly functioning hormones are critical for babies’ proper development. Last month Brown University researchers reported that mothers’ triclosan exposure during pregnancy was linked to lower birth weights, smaller heads and earlier births. ...In addition to endocrine disruption concerns, Lindeman and other signers outline two other potential human health impacts from exposure to triclosan: heightened sensitivity to allergens, and antibiotic resistance. Large studies of children in the United States and Norway have linked triclosan to allergies and worsening asthma. And there is evidence bacteria that develop resistance to triclosan also become resistant to other antibacterial compounds.

The bottom line is to read the ingredients list on products, and avoid all products labeled "antimicrobial" or "antibacterial" (because those are the ones typically containing triclosan and triclorocarban). Over 2000 products contain antibacterial compounds. I've even seen them in pillows, pillow protectors, mattress pads, dish racks, toys, and blankets! As we know from the latest microbiology research, we need to cultivate a healthy microbiome, and not throw it out of whack by continuously trying to kill off all bacteria. From The Atlantic:

It's Probably Best to Avoid Antibacterial Soaps

Antimicrobial chemicals are so ubiquitous that a recent study found them in pregnant mothers' urine and newborns' cord blood. Research shows that their risks may outweigh their benefits.

Antimicrobial chemicals, intended to kill bacteria and other microorganisms, are commonly found in not just soaps, but all kinds of products—toothpaste, cosmetics, and plastics among them. There is evidence that the chemicals aren’t always effective, and may even be harmful, and their ubiquity means people are often continually exposed to them.

One such chemical, triclosan, has previously been found in many human bodily fluids. New research found traces of triclosan, triclocarban, and butyl paraben in the urine of pregnant women, and the cord blood of newborn infants. 

The research looked at the same population of 180 expectant mothers living in Brooklyn, New York, most of Puerto Rican descent. In a study published last week in Environmental Science and Technology, researchers from Arizona State University and State University of New York’s Downstate School of Public Health found triclosan in 100 percent of the women’s urine samples, and triclocarban in 87 percent of the samples. Of the 33 cord blood samples they looked at, 46 percent contained triclosan and 23 percent contained triclocarban.

In another, still-unpublished study, the researchers found that all of the cord blood samples contained “at least one paraben,” according to Dr. Rolf Halden, director of ASU’s Center for Environmental Security. 

Triclosan and triclocarban are endocrine disruptors, Halden explains. The risk there is that the chemicals can mimic thyroid hormones, potentially disrupting the metabolism and causing weight gain or weight loss. Previous research has also shown a connection between higher levels of triclosan in urine, and allergy diagnoses in children.

In the study looking at butyl paraben, the researchers found an association between higher exposure to the chemical, and a smaller head circumference and length of babies after they were born.

The thing about antibacterial soaps (containing triclosan and triclocarban), is that there’s no evidence they are any better at keeping people from getting sick than regular old soap, according to the Food and Drug Administration. 

Butyl paraben is used as a preservative, so it’s found in a wider breadth of products, according to Halden. This isn’t entirely bad—it’s one of the chemicals that keeps things from growing in your tub of face lotion after you stick your grubby little fingers in it—but the question with any chemical is whether the benefits outweigh the risks. Antimicrobial chemicals, any potential risks to personal health aside, may also be contributing to the rise of drug-resistant bacteria.

From Science News:

Pregnant women, fetuses exposed to antibacterial compounds face potential health risks 

As the Food and Drug Administration mulls over whether to rein in the use of common antibacterial compounds that are causing growing concern among environmental health experts, scientists are reporting that many pregnant women and their fetuses are being exposed to these substances. The compounds are used in more than 2,000 everyday products marketed as antimicrobial, including toothpastes, soaps, detergents, carpets, paints, school supplies and toys, the researchers say.

The problem with this, explains Pycke, a research scientist at Arizona State University (ASU), is that there is a growing body of evidence showing that the compounds can lead to developmental and reproductive problems in animals and potentially in humans. Also, some research suggests that the additives could contribute to antibiotic resistance, a growing public health problem.

Although the human body is efficient at flushing out triclosan and triclocarban, a person's exposure to them can potentially be constant. "If you cut off the source of exposure, eventually triclosan and triclocarban would quickly be diluted out, but the truth is that we have universal use of these chemicals, and therefore also universal exposure," says Rolf Halden, Ph.D., the lead investigator of the study at ASU.