One fear people have is of developing problems with their memory in their later years, called age-related memory loss. A recent study finding a possible way to maintain memory in older adults is intriguing and offers hope. And best of all, it's fairly easy to do - just increase the intake of flavanol rich foods.
A large Columbia University study of adults over age 60 found that daily flavanol supplementation (cocoa extract with 500 mg flavanols) over a 3 year period improved the memory of persons whose diet was low in flavanol intake from foods, but not in persons with high intake of flavanols. The researchers suggest that a low flavanol diet is one of the drivers of age-related memory loss.
The researchers stated that flavanols only improved memory processes governed by the hippocampus, and did not improve memory mediated by other areas of the brain.
Flavanols are natural substances found in certain fruits and vegetables, especially berries, onions, kale, lettuce, tomatoes, apples, grapes, and cocoa. Flavanols are a type or class of flavonoids, all of which have health benefits. Eat a variety of plant foods (includes tea and wine) to ensure you're eating a variety of flavonoids.
Some other benefits of flavonoids: they are anti-inflammatory, anti-oxidative, have anti-mutagenic and anti-carcinogenic properties, lower heart disease death rates, and prevention of heart disease.
From Medical Xpress: Low-flavanol diet drives age-related memory loss, large study finds
A large-scale study led by researchers at Columbia and Brigham and Women's Hospital/Harvard is the first to establish that a diet low in flavanols—nutrients found in certain fruits and vegetables—drives age-related memory loss.
The study found that flavanol intake among older adults tracks with scores on tests designed to detect memory loss due to normal aging and that replenishing these bioactive dietary components in mildly flavanol-deficient adults over age 60 improves performance on these tests.
"The improvement among study participants with low-flavanol diets was substantial and raises the possibility of using flavanol-rich diets or supplements to improve cognitive function in older adults," says Adam Brickman, Ph.D., professor of neuropsychology at Columbia University Vagelos College of Physicians and Surgeons and co-leader of the study.
The finding also supports the emerging idea that the aging brain requires specific nutrients for optimal health, just as the developing brain requires specific nutrients for proper development.
"In this century, as we are living longer research is starting to reveal that different nutrients are needed to fortify our aging minds. Our study, which relies on biomarkers of flavanol consumption, can be used as a template by other researchers to identify additional, necessary nutrients."
Age-related memory loss linked to changes in hippocampus
The current study builds on over 15 years of research in Small's lab linking age-related memory loss to changes in the dentate gyrus, a specific area within the brain's hippocampus—a region that is vital for learning new memories—and showing that flavanols improved function in this brain region.
Additional research, in mice, found that flavanols—particularly a bioactive substance in flavanols called epicatechin—improved memory by enhancing the growth of neurons and blood vessels and in the hippocampus.
Next, Small's team tested flavanol supplements in people. One small study confirmed that the dentate gyrus is linked to cognitive aging. A second, larger trial showed that flavanols improved memory by acting selectively on this brain region and had the most impact on those starting out with a poor-quality diet.
In the new study, the Columbia team collaborated with researchers at Brigham and Women's Hospital studying the effects of flavanols and multivitamins in COSMOS (COcoa Supplements and Multivitamin Outcomes Study). The current study, COSMOS-Web, was designed to test the impact of flavanols in a much larger group and explore whether flavanol deficiency drives cognitive aging in this area of the brain.
More than 3,500 healthy older adults were randomly assigned to receive a daily flavanol supplement (in pill form) or placebo pill for three years. The active supplement contained 500 mg of flavanols, including 80 mg epicatechins, an amount that adults are advised to get from food.
At the beginning of the study, all participants completed a survey that assessed the quality of their diet, including foods known to be high in flavanols. Participants then performed a series of web-based activities in their own homes, designed and validated by Brickman, to assess the types of short-term memory governed by the hippocampus. The tests were repeated after years one, two, and three. Most of the participants identified themselves as non-Hispanic and white.
More than a third of the participants also supplied urine samples that allowed researchers to measure a biomarker for dietary flavanol levels, developed by co-study authors at Reading University in the U.K., before and during the study. The biomarker gave the researchers a more precise way to determine if flavanol levels corresponded to performance on the cognitive tests and ensure that participants were sticking to their assigned regimen (compliance was high throughout the study). Flavanol levels varied moderately, though no participants were severely flavanol-deficient.
People with mild flavanol deficiency benefited from flavanol supplement
Memory scores improved only slightly for the entire group taking the daily flavanol supplement, most of whom were already eating a healthy diet with plenty of flavanols.
But at the end of the first year of taking the flavanol supplement, participants who reported consuming a poorer diet and had lower baseline levels of flavanols saw their memory scores increase by an average of 10.5% compared to placebo and 16% compared to their memory at baseline. Annual cognitive testing showed the improvement observed at one year was sustained for at least two more years.
The results strongly suggest that flavanol deficiency is a driver of age-related memory loss, the researchers say, because flavanol consumption correlated with memory scores and flavanol supplements improved memory in flavanol-deficient adults.
The findings of the new study are consistent with those of a recent study, which found that flavanol supplements did not improve memory in a group of people with a range of baseline flavanol levels. The previous study did not look at the effects of flavanol supplements on people with low and high flavanol levels separately.
"What both studies show is that flavanols have no effect on people who don't have a flavanol deficiency," Small says.