Skip to content

The last few days a number of articles appeared in the news about the official US government's opposition to a WHO (World Health Organization)  resolution supporting breastfeeding. Huh? Apparently this was because the US government decided that supporting formula companies was more important than the health of mothers and babies. The US government went so far as to threaten other countries if they supported the resolution.

Medical and scientific studies have clearly established that breast milk is best for a baby for numerous short and long-term health benefits. There are also health benefits to the mother from breastfeeding (e.g. lower incidence of breast and ovarian cancer, and type 2 diabetes). Of course there are many women who can't or won't breastfeed for various reasons (including they can't because of lack of maternity leave or support at their workplace) and their babies will drink infant formula and do well. But .... in general women should be encouraged to breastfeed because of the numerous health benefits, and they shouldn't just hear nonsense (e.g.lies)  from infant formula companies. Below are links to articles explaining what happened in the US vs the WHO and other countries in the breastfeeding controversy, and some reasons why breast milk  is better than formula.

But what these news articles didn't mention is another really important health benefit: mothers transmit hundreds of species of microbes to their babies in breast milk. Yes, hundreds of microbial species which help "seed" the infant's microbiome (microbial communities). [Some research posts: more than 700 species of bacteria in breast milk, and gut microbiota development,]

From Quartz:  All the scientific support for breastfeeding that the US apparently didn’t read  ...continue reading "Why Are Formula Company Profits More Important Than the Health of Babies?"

A recent large study (using health data from the United Kingdom) found that children and adults who took five commonly prescribed types of antibiotics had an increased risk of developing kidney stones, compared to people who didn't take these antibiotics. The five types of antibiotics were sulfas, cephalosporins, fluoroquinolones, nitrofurantoin, and broad-spectrum penicillins. The antibiotics were taken orally (by mouth).

However, not all antibiotics were associated with an increased risk of kidney stones. The study examined 12 types of antibiotics, and found seven types that didn’t appear to influence the risk of kidney stones.The strongest risks for kidney stones were in children and adolescents, and with more recent exposure. The risk of kidney stones decreased over time, but remained elevated several years after antibiotic use.

The researchers pointed out that recent studies have found differences in the gut microbiome (community of microbes) between patients with kidney stones and those without kidney stones. And that studies find that the use of antibiotics disrupts the microbiome. (here and here) Another reason to only take antibiotics when absolutely necessary. From Science Daily:

Oral antibiotics may raise risk of kidney stones

Pediatric researchers have found that children and adults treated with some oral antibiotics have a significantly higher risk of developing kidney stones. This is the first time that these medicines have been linked to this condition. The strongest risks appeared at younger ages and among patients most recently exposed to antibiotics ...continue reading "Antibiotics and Kidney Stones"

Once again, a study finds that consumption of nuts is beneficial to health - this time by impacting the gut microbiome (community of microbes) in a beneficial way. This was a nicely done study -18 healthy adults randomly assigned first to either eating about a handful of walnuts daily (42 g) or zero nuts daily for 3 weeks, and then assigned to the other group for 3 weeks, with a "washout period" of 1 week in-between. Walnut consumption resulted in higher amounts of beneficial gut bacteria (Faecalibacterium, Clostridium, Dialister, and Roseburia) which are butyrate producing (beneficial!), and lowering of proinflammatory secondary bile acids and LDL cholesterol (both beneficial).

As seen in this walnut study from the University of Illinois, adding walnuts to the diet has quick effects on the gut microbiome. Other studies find that diets rich in nuts (which are a source of dietary fiber and unsaturated fatty acids) are associated with a reduced risk of death from cancer and heart disease. Bottom line: eating some nuts daily feeds beneficial bacteria in the gut, and so has beneficial health effects. This walnut study had everyone eating about a handful of walnut halves a day (42 g, which is a little less than 1/2 cup walnut halves).

From Science Daily: Walnuts impact gut microbiome and improve health

Diets rich in nuts, such as walnuts, have been shown to play a role in heart health and in reducing colorectal cancer. According to a new study from the University of Illinois, the way walnuts impact the gut microbiome -- the collection of trillions of microbes or bacteria in the gastrointestinal tract -- may be behind some of those health benefits.  ...continue reading "Walnuts Feed Beneficial Gut Bacteria and Other Health Benefits"

People ask me: what's going on with research in the treatment of sinusitis with probiotics? Well, the answer is that things are moving along slowly - very slowly, but there are good signs. Earlier this year an interesting article by researcher Anders U. Cervin at the University of Queensland (Australia) was published that specifically talked about "topical probiotics" as a potential treatment for chronic sinusitis. By this he means that probiotics (beneficial bacteria) could be directly applied to the nasal passages in the nose, such as a nasal spray. And he discussed how the prevailing view nowadays, based on scientific evidence, is that in sinusitis there is an "imbalance of the sinus microbiome" - the community of microbes living in the sinuses. Yes!!!

Cervin mentioned all sorts of research showing beneficial effects of using different strains of probiotics for various illnesses, mentioned the Abreu et al study (which is the reason I focused on Lactobacillus sakei as a sinusitis treatment, and which works successfully for many people), but.... nowhere did he mention Lactobacillus sakei by name. What???

Cervin discusses how studies are needed to test nasal sprays for the treatment of sinusitis, and made a lot of good points. He looked at studies already done, wondered what bacterial strains might be beneficial, but obviously didn't read the Abreu et al study carefully to see that L. sakei might be a good candidate to test. And he didn't do an internet search to see what probiotics people are using already as a successful treatment for sinusitis (see post). He did mention that the only good trial using nasal spray probiotics in humans with sinusitis found no effect - because they tested the wrong Lactobacillus strains - they were honeybee strains [see post], and not ones found in humans.

Eh... So once again I'm heartened by the focus on the microbial community in sinusitis, and heartened that he said there it was time to get out of the laboratory and start testing probiotics as treatments on people. But I'm dismayed that the focus is so narrow that he's missing what is in front of him - what is already out there. He also missed that a "snot transplant" study is now going on in Europe, which is sure to have interesting results.

By the way, some of the questions the article raises are ones which, based on the experiences of myself and others over the past 5 years, we can already answer: living bacteria as a treatment are better than dead bacteria (using dead bacteria doesn't work), nasal treatments work but just swallowing a probiotic pill doesn't, Lactobacillus sakei works as a treatment for many, the L. sakei bacteria reduces inflammation in the nasal passages, the probiotic can be used in place of an antibiotic, and only treat when needed and not continuously (continuously treating can also result in an imbalance in the sinus microbiome). [See post The One Probiotic That Treats Sinusitis where these issues are discussed.] ...continue reading "Researcher Sees Potential for Sinusitis Nasal Probiotics"

1

Study after study, and such influential researchers as Dr. Martin Blaser (at New York University) have warned about antibiotics having a negative effect on the human microbiome - that they kill off gut microbes. And all conclude that therefore antibiotics should be used carefully - only when needed. But there are other reasons to be cautious about antibiotics as a recent article warned. Some people who take the class of antibiotics called fluoroquinolones develop a syndrome called fluoroquinolone-associated disability (FQAD) which causes crippling side-effects, including irreversible nerve damage. People who have fallen ill after taking fluoroquinolones call it being "floxed".

The FDA currently has "black box" warnings about fluoroquinolones - that they can cause tendon rupture or a risk of irreversible nerve damage in those taking the antibiotics. Black box warnings are placed inside a black box on drug labels and call attention to serious or life-threatening risks. Millions have taken these drugs, but some (the FDA considers it a rare event) develop the serious side-effects.

Many people (myself included) have taken fluoroquinolones, such as Levaquin, over the years for sinusitis treatment. Some have taken them multiple times. Most have not reported side-effects (including myself), but those who developed serious side-effects (floxed) are desperate for sinusitis treatments that don't involve taking antibiotics. Which is where alternative treatments using probiotics such as Lactobacillus sakei come in (yes, it works for sinusitis!). Excerpts from Nature (the international journal of science):

When Antibiotics Turn Toxic

In 2014, Miriam van Staveren went on holiday to the Canary Islands and caught an infection. Her ear and sinuses throbbed, so she went to see the resort doctor, who prescribed a six-day course of the popular antibiotic levofloxacin. Three weeks later, after she had returned home to Amsterdam, her Achilles tendons started to hurt, then her knees and shoulders. She developed shooting pains in her legs and feet, as well as fatigue and depression. “I got sicker and sicker,” she says. “I was in pain all day.” Previously an active tennis player and hiker, the 61-year-old physician could barely walk, and had to climb the stairs on all fours. Since then, she has seen a variety of medical specialists. Some dismissed her symptoms as psychosomatic. Others suggested diagnoses of fibromyalgia or chronic fatigue syndrome. Van Staveren is in no doubt, however. She’s convinced that the antibiotic poisoned her.

She’s not alone. Levofloxacin is one of a class of drugs called fluoroquinolones, some of the world’s most commonly prescribed antibiotics. In the United States in 2015, doctors doled out 32 million prescriptions for the drugs, making them the country’s fourth-most popular class of antibiotic. But for a small percentage of people, fluoroquinolones have developed a bad reputation. On websites and Facebook groups with names such as Floxie Hope and My Quin Story,thousands of people who have fallen ill after fluoroquinolone treatment gather to share experiences. Many of them describe a devastating and progressive condition, encompassing symptoms ranging from psychiatric and sensory disturbances to problems with muscles, tendons and nerves that continue after people have stopped taking the drugs. They call it being ‘floxed’.  ...continue reading "Some Antibiotics Can Have Crippling Side Effects"

Once again a study found that a high fiber diet feeds beneficial gut microbes and causes changes in the gut microbe community (the microbiome). What's new in this study is that eating the high fiber diet had health benefits for people with type 2 diabetes - that it lowered their blood sugar levels (better blood glucose control), resulted in  greater weight loss, and better lipid levels. And that when these gut microbes were transplanted into mice - they had similar health effects (better regulation of blood sugar). Which showed it was the microbes that caused the beneficial effects.

What foods are high-fiber foods? Fruits, vegetables, whole grains, nuts, seeds, and legumes (beans). [See Feeding Your Gut Microbes] From The Scientist:

High-Fiber Diet Shifts Gut Microbes, Lowering Blood Sugar in Diabetics

A diet high in fiber can reshape the gut microbiome, helping people with type 2 diabetes stay healthy. A study published yesterday (March 8) in Science found that when patients with the condition ate a high-fiber diet, they had an abundance of microbial species that helped to reduce blood sugar and regulate weight compared with cohorts who ate a less fiber-rich diet ...continue reading "High Fiber Diet Is Beneficial For Those With Type 2 Diabetes"

1

Recently I was asked about the human skin microbiome (skin microbial communities) and whether the things we do frequently (e.g. use soap and shampoo, go swimming in a pool) has an effect on our skin microbiome. As I've posted earlier, human skin microbes include bacteria, fungi, viruses, and  archaea. Most of these microbes are harmless or beneficial, but when the microbial communities are out of whack (dysbiosis), then there are diseases or skin disorders (such as acne, psoriasis, and eczema). The human skin acts as a physical barrier, a first line of defense, to pathogens (microbes that can cause disease). Studies have found that using soaps, lotions, make-up, our diet and lifestyle all have some effect on skin microbial communities. Even living with someone results in some microbial exchange. Spending more time outdoors, owning pets, and drinking less alcohol (or none) are all associated with higher levels of microbial skin diversity.

But then I came across a small study from 2016 (National Human Genome Research Institute, NIH, Bethesda, MD) in Cell - Temporal Stability of the Human Skin Microbiome. The researchers found that skin microbial communities are "surprisingly stable over time" (the study lasted 2 years), even though the humans were typically exposed to things daily that could disrupt their skin microbial communities (other people, clothing, the environments). But some individuals had more stable communities than others, and stability varied from site to site (the feet had the least stable microbial communities). Also, they found that bacterial, fungal, and viral communities not only show a strong preference for inhabiting specific skin sites, but also serve as "microbial fingerprints" that are highly unique to individuals. They did point out that "immunosuppression, illness, or the occurrence of disease have been shown to cause major shifts in skin communities".

Then there is a recent 2018 review article - but behind a paywall even though the researchers worked for NIH, thus paid for with our tax dollars (!!).They also discussed all the microbes living on the skin, and how when the microbial communities are out of whack (dysbiosis), then there is disease (whether acne, or eczema, etc.). Microbes that are beneficial in healthy people can become pathogenic, e.g. when the person has a disease. It also pointed out that only with modern genetic sequencing methods (rather than old style "cultures") can one really see what makes up the skin microbial communities. And that using these methods we can compare the skin microbes of healthy persons with those with a disease. And yes, there then is also the possibility of finding protective, beneficial microorganisms which are in healthy persons, but absent or under-represented in those with a disease. Sounds  like probiotics for the skin! ...continue reading "Microbes of the Skin"

Research has found that antibiotics disrupt a person's normal gut microbiome (microbial community), especially because the antibiotics kill both bad (pathogenic) and beneficial bacteria. But what about other medicines? Do they also have an effect?

A recently published study that reviewed the research looked precisely at that topic and found that YES - other medicines (besides antibiotics) also have an effect on (disrupt) the gut microbiome. The different categories of drugs - proton pump inhibitors (PPIs), metformin, nonsteroidal anti-inflammatory drugs (NSAIDs), opioids, statins and antipsychotics - all had different kinds of impacts on the gut microbiome.

The researchers also suggest that other types of commonly prescribed medicines now need to be examined for their impact on the intestinal (gut) microbiome, such as thyroid hormones, contraceptive drugs, and antihypertensive (high blood pressure) drugs. Excerpts from Dr. Paul Enck's article about the study at Gut Microbiota Research and Practice:

A systematic review explores the role of non-antibiotic prescription drugs in gut microbiota dysbiosis

Both diet and medications are among the strongest variables affecting the gut microbiome. When it comes to medications, although antibiotics have been repeatedly shown to affect the human gut microbiome, little is known regarding the impact of non-antibiotic prescription drugs on the gut microbiome.

review, led by Dr. Emmanuel Montassier from the MiHAR Lab at Institut de Recherche en Santé 2, Université de Nantes (Nantes, France), has concluded that some non-antibiotic prescription drugs have a notable impact on the gut microbiome to the same extent as antibiotics ...continue reading "Common Medicines That Disrupt the Normal Gut Microbiome"

2

It's official. This month is 5 whole years being free of chronic sinusitis and off all antibiotics! Yes, that's correct - 5 whole years for all 4 family members, and our sinuses feel great!

Back in February 2013 - first I, and then the rest of my family, started using easy do-it-yourself sinusitis treatments containing the probiotic (beneficial bacteria) Lactobacillus sakei. Now we only treat with a L. sakei  product when occasionally needed - and it still works great. And it still feels miraculous.

After reading the original ground-breaking research on sinusitis done by Abreu et al (2012), it led to me trying L. sakei as a sinusitis treatment. Of course, there is an entire community of microbes (bacteria, fungi, viruses) that live in healthy sinuses - the sinus microbiome - but L. sakei seems to be a key one for sinus health. Since that original 2012 study, other studies have also found that in people with chronic sinusitis, the sinus microbial community is out of whack (dysbiosis). 

The one thing different this past year is that our sinus microbial community (sinus microbiome) seems better. If we need to treat (for example, after a virus that goes into sinusitis), then all four of us noticed that we need to use much less of a product than in the past. Incredibly little. So it seems that our sinus microbial community has definitely improved over time.

The post The One Probiotic That Treats Sinusitis (originally posted January 2015 and with many updates since then) contains information using my family's experiences (lots of self-experimentation!) and all the information that people have given me over the years. Thanks everyone! The post has a list of brands and products with L. sakei, treatment results, as well as information about some other promising probiotics (beneficial bacteria).

Thank you all who have contacted me  - whether publicly or privately. Please keep writing and tell me what has worked or hasn't worked for you as a sinusitis treatment. If you find another bacteria or microbe or product that works for you - please let me know. It all adds to the sinusitis treatment knowledge base. I will keep posting updates. 

(NOTE: I wrote our background story - Sinusitis Treatment Story back in December 2013, and there is also a  Sinusitis Treatment Summary page with the various treatment methods quickly discussed. One can also click on SINUSITIS under CATEGORIES to see more posts about what is going on in the world of sinusitis research.)

There have been many posts on this blog about diet, fiber, microbes, and the association of diet with various diseases, such as cancer. A recent journal article by M. Song and A. Chan reviewed studies that looked at the link between diet, gut microbes (the gut microbiota or gut microbiome), and colorectal cancer (what we typically call colon cancer).

In summary, research from the last 20 years has found that diet and colorectal cancer (CRC) go hand in hand, and that diet determines the microbes (microbiota) living in the gut - that is, what you feed the microbes determines what microbes will live and thrive in the gut. Also, certain microbes in the gut are linked to inflammation and cancer formation, and others to its prevention. In other words, there is potential to prevent colorectal cancer with certain diets, and to increase the odds of colorectal cancer with other diets.

What are main dietary factors linked to colorectal cancer? Western diet (lots of processed foods, red and processed meat, low in fiber, refined grains), low levels of dietary fiber, low intake of omega-3 fatty acids from seafood (or fish oil), and obesity. The researchers point out that a Western diet is associated with gut dysbiosis (microbial imbalance), loss of gut barrier integrity, and increased levels of inflammation. What should one do? Basically think to yourself: "I need to feed the beneficial microbes in my gut, so I need to eat lots of fruits, vegetables, whole grains, and seafood (omega-3 fatty acids)" - this is what the researchers call a "prudent pattern diet". And try to maintain a normal weight. Some excerpts from Current Colorectal Cancer Reports:

Diet, Gut Microbiota, and Colorectal Cancer Prevention: a Review of Potential Mechanisms and Promising Targets for Future Research

AbstractDiet plays an important role in the development of colorectal cancer. Emerging data have implicated the gut microbiota in colorectal cancer. Diet is a major determinant for the gut microbial structure and function. Therefore, it has been hypothesized that alterations in gut microbes and their metabolites may contribute to the influence of diet on the development of colorectal cancer.We review several major dietary factors that have been linked to gut microbiota and colorectal cancer, including major dietary patterns, fiber, red meat and sulfur, and obesity

Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the fourth leading cause of cancer death in the world. Over the past few decades, numerous epidemiologic studies have identified a range of dietary factors that may potentially promote or prevent CRC. Likewise, increasing evidence has implicated the gut microbiota in CRC development. Biological plausibility is supported by habitation of numerous gut microbes in the large intestine and the functional importance of the gut microbiota in maintenance of the gut barrier integrity and immune homeostasis, the disruptions of which are among the most important mechanisms in colorectal carcinogenesis. Given the critical role of diet in the configurations of gut microbial communities and production of bacterial metabolites, it has been proposed that diet may influence CRC risk through modulation of the gut microbial composition and metabolism that in turn shape the immune response during tumor development.

Although gut bacterial abundance may respond rapidly to extreme changes in diet, predominant microbial community membership is primarily determined by long-term diet, and substantial inter-individual variation persists despite short-term dietary change. .... Thus, this review focuses on the dietary factors that have strong mechanistic support, including dietary pattern, fiber, red meat and sulfur, and omega-3 fatty acid. Given the close link between diet and obesity and the predominant role of obesity in CRC as well as the substantial data linking the gut microbiome to obesity, we also include obesity at the end of the review.

DIETARY PATTERNS: Convincing data indicate that a “Western dietary pattern,” characterized by high intake of red or processed meat, sweets, and refined grains, is associated with higher risk of colorectal neoplasia; in contrast, diets that are rich in fruits, vegetables, and whole grains (“prudent pattern diet”) are associated with lower risk of CRC. Western diets are associated with gut dysbiosis (microbial imbalance), loss of gut barrier integrity, increased levels of inflammatory proteins, and dysregulated immune signatures.

A potential role of the gut microbiota in mediating the dietary associations with CRC risk is suggested by the dramatic difference of the gut microbial structures between populations consuming different diets. Rural Africans, whose diet is high in fiber and low in fat, have a strikingly different gut microbial composition than urban Europeans or African Americans consuming a Western diet, which parallels the lower CRC rates in Africa than Western countries. For example, the African gut microbiota is characterized by a predominance of Prevotella genus that are involved in starch, hemicellulose, and xylan degradation, whereas the American microbiota is predominated by Bacteroides genus with a higher abundance of potentially pathogenic proteobacteria, such as Escherichia and Acinetobacter. .... Moreover, a crossover study indicates that switching African Americans to a high-fiber, low-fat diet for 2 weeks increases production of SCFAs, suppresses secondary bile acid synthesis, and reduces colonic mucosal inflammation and proliferation biomarkers of cancer risk.

Fiber: Numerous prospective studies have linked higher fiber intake to lower risk of CRC. The most recent expert report from the World Cancer Research Fund and the American Institute for Cancer Research in 2011 concludes that evidence that consumption of foods containing dietary fiber protects against CRC is convincing. Besides systemic benefits for insulin sensitivity and metabolic regulation, which have been implicated in colorectal carcinogenesis, fiber possesses gut-specific activities, such as diluting fecal content, decreasing transit time, and increasing stool weight, thereby minimizing exposure to intestinal carcinogens.

Moreover, soluble fiber can be fermented by bacteria in the lumen of the colon into SCFAs [short-chain fatty acids], including butyrate, acetate,and propionate. Higher fiber intake has been shown to enrich butyrate-producing bacteria in the gut, such as Clostridium, Anaerostipes, Eubacterium, and Roseburia species, and increase production of SCFAs. SCFAs have been suggested as the key metabolites linking the gut microbes to various health conditions, especially CRC

Red Meat and Sulfur: There is convincing evidence that red and processed meats are associated with increased risk of CRC. Recently, the Int. Agency for Research on Cancer has classified processed meat as a carcinogen to humans. Mechanisms underlying the pro-cancer effects of red or processed meats include heme iron, N-nitroso compounds, or heterocyclic amines, and hydrogen sulfide production. Hydrogen sulfide has been implicated in inflammatory disorders associated with risk of CRC, such as ulcerative colitis, and directly with CRC.

Omega-3 Fatty Acid: Marine omega-3 polyunsaturated fatty acid, including eicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid, possesses potent anti-inflammatory activity and may protect against CRC. Fish oil, a rich source of omega-3 fatty acid, is the most popular natural product used by US adults. Substantial data support the beneficial effect of omega-3 fatty acid on CRC prevention and treatment.

Dietary fat composition is a major driver of the gut microbial community structure. Compared to other types of fat, omega-3 fatty acid have been associated with higher intestinal microbiota diversity and omega-3 fatty acid-rich diet ameliorates the gut dysbiosis induced by omega-6 polyunsaturated fatty acid or antibiotics.

Obesity: Since the 1970–1980s, the prevalence of obesity has markedly increased worldwide. The obesity epidemic is believed to be largely driven by global westernization characterized by overconsumption of easily accessible and energy-dense food and a sedentary lifestyle. Obesity is an established risk factor for CRC and several other cancers. Possible mechanisms include increased insulin levels and bioavailability of insulin-like growth factor 1, altered secretion of adipokines and inflammatory cytokines, and changes in sex hormone levels.