Skip to content

Common Insecticide Linked to Neurological Effects in Children

Two studies showing detrimental effects on children from pyrethroids in 2 weeks! The June 3 post was about research linking household pyrethroid exposure to ADHD in children and young teens. The second study found that low level childhood exposures to pyrethroid insecticides was linked to lower scores on an IQ test (Wechsler Intelligence Scale for Children - verbal comprehension and working memory) in 6 year old children. The researchers viewed this as evidence that pyrethroid insecticides may "negatively affect neurocognitive development".

Bottom line: even though pyrethroid pesticides are considered safer than many other pesticides, they still can have undesirable effects on humans, especially developing children. To be safe, use least toxic pest control that uses non-toxic, safe "alternative" or "natural" methods rather than just "spraying a chemical". Another possibility is looking for "organic pest control" or"least-toxic Integrated Pest Management" (IPM) that looks to deal with pest problems with non-toxic methods (which may include sealing holes, heat, caulking, trapping, using sticky traps, and even vacuuming up insects). From Science Daily:

Impact of insecticides on the cognitive development of 6-year-old children

Researchers have provided new evidence of neurotoxicity in humans from pyrethroid insecticides, which are found in a wide variety of products and uses. An increase in the urinary levels of two pyrethroid metabolites (3-PBA and cis-DBCA) in children is associated with a significant decrease in their cognitive performances , particularly verbal comprehension and working memory. This study was carried out on nearly 300 mother and child pairs from the PELAGIE cohort (Brittany).

Pyrethroids constitute a family of insecticides widely used in a variety of sectors: agriculture (various crops), veterinary (antiparasitics) and domestic (lice shampoo, mosquito products). Their mode of action involves blocking neurotransmission in insects, leading to paralysis. Because of their efficacy and relative safety for humans and mammals, they have replaced older compounds (organochlorides, organophosphates, carbamate) considered more toxic.

Exposure of children to pyrethroids is common. It is different to adult exposure, due to the closer proximity of children to ground-level dust (which stores pollutants), more frequent hand-to-mouth contact, lice shampoos, etc. In children, pyrethroids are mainly absorbed via the digestive system, but are also absorbed through the skin. They are rapidly metabolised in the liver, and mainly eliminated in the urine as metabolites within 48 hours.

Pregnancy is also an important period of life for the future health of the child. For this reason, the researchers studied the PELAGIE mother-child cohort established between 2002 and 2006, which monitors 3,500 mother-child pairs. This cohort simultaneously considers exposure to pyrethroid insecticides during fetal life and childhood. A total of 287 women, randomly selected from the PELAGIE cohort and contacted successfully on their child's sixth birthday, agreed to participate in this study.

Two psychologists visited them at home. One assessed the child's neurocognitive performances using the WISC scale (verbal comprehension index, VCI, and working memory index, WMI). The other psychologist characterised the family environment and stimuli that might have had a role on the child's intellectual development, collected a urine sample from the child, and collected dust samplesExposure to pyrethroid insecticides was estimated by measuring levels of five metabolites (3-PBA, 4-F-3-PBA, cis-DCCA, trans-DCCA and cis-DBCA) in urine from the mother (collected between the 6th and 19th weeks of pregnancy) and from the child (collected on his/her 6th birthday).

Results show that an increase in children's urinary levels of two metabolites (3 PBA and cis-DBCA) was associated with a significant decrease in cognitive performances, whereas no association was observed for the other three metabolites (4-F-3-PBA, cis-DCCA and trans-DCCA). With respect to metabolite concentrations during pregnancy, there was no demonstrable association with neurocognitive scores.