Skip to content

New research shows that the most applied pesticide in the world - glyphosate - is being detected in more and more foods (such as honey, wheat). Glyphosate is a herbicide (weed killer) found in the product Roundup. Its use is increasing annually due to its use on crops genetically engineered to tolerate applications of the herbicide ("Roundup Ready" corn, soybeans, canola).

The latest news is that glyphosate residues are found in oat products, including baby cereals. The FDA (Food and Drug Administration) only started testing this year for glyphosate residues in foods (see post), but they may already be slowing down testing - because they are already talking about shutting down one of the testing labs (tested honey). There are various health concerns about glyphosate and its residues in foods, including that it is a probable carcinogen and a biocide that may disrupt the bacteria of the human gut. What are the long-term health implications of constantly (daily) eating foods with pesticide residues such as glyphosate? No one knows, but it is concerning. Yes, individual foods have low levels, but we're ingesting the pesticide residue in many foods every day - thus chronic exposure. And yes, studies show that it is found in our urine (one European study found it in 100% of people tested)

Note that Monsanto (producer of the glyphosate product Roundup) also encourages farmers to apply Roundup right before harvest as a "preharvest dessicant" to non-genetically modified crops, which also increases the odds that residues will be found in food. (Look at the preharvest application guide from Monsanto for oats and some other crops). What can one do? Buy organic foods - because glyphosate is not allowed to be used in organic farming. From the investigative journalist Carey Gillam's article for Huffington Post:

FDA Tests Confirm Oatmeal, Baby Foods Contain Residues of Monsanto Weed Killer

The U.S. Food and Drug Administration, which is quietly starting to test certain foods for residues of a weed killing chemical linked to cancer, has found the residues in a variety of oat products, including plain and flavored oat cereals for babies.

Data compiled by an FDA chemist and presented to other chemists at a meeting in Florida showed residues of the pesticide known as glyphosate in several types of infant oat cereal, including banana strawberry- and banana-flavored varieties. Glyphosate was also detected in “cinnamon spice” instant oatmeal; “maple brown sugar” instant oatmeal and “peach and cream” instant oatmeal products, as well as others. In the sample results shared, the levels ranged from nothing detected in several different organic oat products to 1.67 parts per million, according to the presentation.

Glyphosate, which is the key ingredient in Monsanto Co.’s Roundup herbicide, is the most widely used weed killer in the world, and concerns about glyphosate residues in food spiked after the World Health Organization in 2015 said a team of international cancer experts determined glyphosate is a probable human carcinogen. Other scientists have raised concerns about how heavy use of glyphosate is impacting human health and the environment.

The EPA maintains that the chemical is “not likely” to cause cancer, and has established tolerance levels for glyphosate residues in oats and many other foods. The levels found by the FDA in oats fall within those allowed tolerances, which for oats is set by the EPA at 30 ppm. The United States typically allows far more glyphosate residue in food than other countries allow. In the European Union, the tolerance for glyphosate in oats is 20 ppm.

Monsanto, which derives close to a third of its $15 billion in annual revenues from glyphosate-based products, has helped guide the EPA in setting tolerance levels for glyphosate in food, and in 2013 requested and received higher tolerances for many foods. The company has developed genetically engineered crops designed to be sprayed directly with glyphosate. Corn, soybeans, canola and sugar beets are all genetically engineered to withstand being sprayed with glyphosate.

Oats are not genetically engineered. But Monsanto has encouraged farmers to spray oats and other non-genetically modified crops with its glyphosate-based Roundup herbicides shortly before harvest. The practice can help dry down and even out the maturity of the crop. “A preharvest weed control application is an excellent management strategy to not only control perennial weeds, but to facilitate harvest management and get a head start on next year’s crop ” according to a Monsanto “pre-harvest staging guide.”  Glyphosate is also used on wheat shortly before harvest in this way, as well as on other crops. A division of the U.S. Department of Agriculture....has been testing wheat for glyphosate residues for years for export purposes and have detected the residues in more than 40 percent of hundreds of wheat samples examined in fiscal 2009, 2010, 2011 and 2012.

Even though the FDA annually examines foods for residues of many other types of pesticides, it has skipped testing for glyphosate residues for decades. It was only in February of this year that the agency said it would start some glyphosate residue analysis. That came after many independent researchers started conducting their own testing and found glyphosate in an array of food products, including flour, cereal, and oatmeal. Monsanto and U.S. regulators have said glyphosate levels in food are too low to translate to any health problems in humans. But critics say such assurances are meaningless unless the government actually routinely measures those levels as it does with other pesticides. And some do not believe any level of glyphosate is safe in food. 

In addition to oats, the FDA also earlier this year tested samples of U.S. honey for glyphosate residues and found all of the samples contained glyphosate residues, including some with residue levels double the limit allowed in the European Union, according to documents obtained through a Freedom of Information Act request. The EPA has not set a tolerance level for glyphosate in honey, so any amount is problematic legally....the FDA did not notify the honey companies involved that their products were found to be contaminated with glyphosate residues, nor did it notify the public. The FDA has also tested corn, soy, eggs and milk in recent months, and has not found any levels that exceed legal tolerance, though analysis is ongoing.

A very popular herbicide – currently the most widely applied pesticide in the world – is glyphosate, commonly known as Roundup. Global use was 1.65 billion pounds in 2014 , while overall use in the US was 276.4 million pounds in 2014. Glyphosate is a human carcinogen and linked to various health effects, and even though it is so extensively used, the FDA just announced in February 2016 that they will “soon” start testing for its presence and actual levels in food for the first time in the agency’s history.

What, it never occurred to them that the most widely used pesticide in the world would be found in food?  Of course they knew glyphosate residues were occurring in food because in 2013 the EPA raised "tolerance limits" for human exposure to glyphosate for certain foods, stating with "reasonable certainty that no harm will result" from human exposure to the chemical. This increase in tolerance levels came about from a request from Monsanto (the manufacturer of the glyphosate herbicide Roundup), and even though numerous groups protested the increase, the EPA went along with Monsanto's request. Some tolerances doubled.

But remember.... there are very strong industry pressures on the EPA, and so the EPA seems to keep its head firmly in the sand for all sorts of pesticide issues. Maybe their motto is: see no evil...hear no evil....

The reason that glyphosate tolerance limits needed to be increased in the USA is because Roundup Ready crops are now so extensively planted, and this has resulted in skyrocketing use of glyphosate in the last 20 years. Roundup Ready crops are genetically modified to tolerate repeated glyphosate spraying (against weeds)  during the growing season. However, the crops take up and accumulate  glyphosate, and so glyphosate residues are increasing in crops. Another reason for increased residue of glyphosate in crops is the current practice of applying an herbicide such as Roundup right at the time of harvest to non-GMO crops such as wheat, so that the crop dies at once and dries out (pre-harvest crop dessication), and which is called a "preharvest application" by Monsanto. Glyphosate is now off-patent so many other companies are also using glyphosate in their products throughout the world.

Private testing has already found glyphosate residues in breast milk, soybeans, corn, honey, cereal, wheat flour, soy sauce, and infant formula. It is currently unknown what glyphosate residues in food, which we then ingest, mean for human health. Several studies have linked glyphosate to human health ailments, including non-Hodgkin lymphoma and kidney and liver problems. Of special concern is that because glyphosate is so pervasive in the environment, even trace amounts might be harmful due to chronic exposure. Some people (including researchers) are even suggesting that much of "gluten sensitivity" or "gluten intolerance" that people complain of, may actually be sensitivity to glyphosate residues in food.

So where have glyphosate residues been found recently? In Germany's 14 most popular beers. German beer purity in question after environment group finds weed-killer traces And in feminine hygiene products in France. How to lower your daily intake of glyphosate? Eat organic foods as much as possible, including wheat, corn, oats, soybeans.

Some influential scientists and physicians just came out with a Statement of Concern regarding their serious concerns with glyphosate. The article summary (Abstract) from Environmental Health: Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement

The broad-spectrum herbicide glyphosate (common trade name “Roundup”) was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds.

Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization’s International Agency for Research on Cancer recently concluded that glyphosate is “probably carcinogenic to humans.” In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards.

We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.