I know of a number of people in NY and NJ who have been struggling for years with persistent Lyme disease. So this research with the possibility of treatments that actually work is fantastic. And it gives support to all those people who say they still have Lyme disease after antibiotic treatment, but the medical establishment says they're wrong - that it's all their mind or due to something else. Yes, they still have Lyme disease from persister cells that avoided the antibiotic treatment! Persister cells are drug-tolerant,dormant variants of Borrelia burgdorferi (the bacterium that causes Lyme disease). And perhaps pulse-dosing antibiotics may work to get rid of the persister cells. The antibiotic they successfully used in the research is ceftriaxone (a cephalosporin antibiotic) - but only in cultures grown in a lab. Further research is needed. From Science Daily:
Researchers' discovery may explain difficulty in treating Lyme disease
Northeastern University researchers have found that the bacterium that causes Lyme disease forms dormant persister cells, which are known to evade antibiotics. This significant finding, they said, could help explain why it's so difficult to treat the infection in some patients.
In other chronic infections, Lewis' lab has tracked the resistance to antibiotic therapy to the presence of persister cells--which are drug-tolerant, dormant variants of regular cells. These persister cells are exactly what they've identified here in Borrelia burgdorferi, the bacterium that causes Lyme disease.The researchers have also reported two approaches--one of them quite promising--to eradicate Lyme disease, as well as potentially other nasty infections.
Lyme disease affects 300,000 people annually in the U.S., according to the Centers for Disease Control and Prevention, and is transmitted to people via bites from infected blacklegged ticks. If caught early, patients treated with antibiotics usually recover quickly. However, about 10 to 20 percent of patients, particularly those diagnosed later, who have received antibiotic treatment may have persistent and recurring symptoms including arthritis, muscle pain, fatigue, and neurological problems. These patients are diagnosed with Post-treatment Lyme Disease Syndrome.
In addition to identifying the presence of these persister cells, Lewis' team also presented two methods for wiping out the infection--both of which were successful in lab tests. One involved an anti-cancer agent called Mitomycin C, which completely eradicated all cultures of the bacterium in one fell swoop. However, Lewis stressed that, given Mitomycin C's toxicity, it isn't a recommended option for treating Lyme disease, though his team's findings are useful to helping to better understand the disease.
The second approach, which Lewis noted is much more practical, involved pulse-dosing an antibiotic to eliminate persisters. The researchers introduced the antibiotic a first time, which killed the growing cells but not the dormant persisters. But once the antibiotic washed away, the persisters woke up, and before they had time to restore their population the researchers hit them with the antibiotic again. Four rounds of antibiotic treatments completely eradicated the persisters in a test tube.
"This is the first time, we think, that pulse-dosing has been published as a method for eradicating the population of a pathogen with antibiotics that don't kill dormant cells," Lewis said. "The trick to doing this is to allow the dormant cells to wake up.