Skip to content

Tattoos are incredibly popular these days. But do persons getting a tattoo actually know what's in the tattoo inks? Are they safe?

Unfortunately, the answer is that the inks are underregulated. A recent study found that many of the ingredients are not listed on the tattoo ink label. Only since 2022 has a law been passed giving the FDA oversight, but so far nothing much has happened.

A recent study by Binghamton Univ. researchers found that found that when they examined 54 tattoo inks from 9 manufacturers in the US, they found that 45 of them contained unlisted additives and/or pigments. More than half contained the unlisted ingredient polyethylene glycol, which can cause organ damage through repeated exposure. Other unlisted ingredients were propylene glycol, 2-phenoxyethanol (health risks to nursing infants), and azo containing dyes. Many of the unlisted ingredients posed possible allergic or other health risks.

The researchers only looked at additives present in large amounts (2000 parts per million or ppm). Once again European regulations are stricter with oversight down to 2 ppm.

Much is still unknown about health effects from the inks in tattoos. But it is known that there is persistent inflammation and also that some particles in dyes migrate to the lymph nodes in the body. Colorful tattoo inks can contain toxic elements such as nickel, chromium, cadmium, aluminum.

From Ars Technica: Caveat emptor: 90% of tattoo inks have unlabeled or mislabeled ingredients

If you live in the US and are planning on getting a tattoo any time soon, we've got some potentially unwelcome news. Many common commercial tattoo inks have either different ingredients than those listed on the label or additional substances that are not listed at all, according to a new paper published in the journal Analytical Chemistry. And there are other scientific studies suggesting that some of those ingredients could have adverse health effects, either in the form of allergic reactions or skin or other cancers.

...continue reading "Hidden Ingredients In Tattoo Inks"

Tattoos are very popular these days, with about 29% of Americans having one or more. But there also is concern because so little is known about tattoo inks and any health effects on the body, and because adverse effects (e.g. inflammatory reactions) can occur months or years later. One study of 300 people in New York City with tattoos found that 10.3% reported experiencing an adverse tattoo reaction, of which 6% reported suffering from a chronic reaction from a specific color (especially red and black ink) that lasted for more than 4 months.

Now a new study in the journal Scientific Reports reports that microscopic particles from tattoo inks can migrate into the body and wind up in the lymph nodes of the immune system. Most tattoo inks contain particles of varying sizes - with some being very small nanoparticles. The researchers analyzed the skin and lymph nodes of 4 tattooed corpses and 2 corpses with no tattoos. They found the presence of several toxic elements such as nickel, chromium, cadmium, aluminum from the colorful tattoo inks. They found tattoo pigment particles in the skin, and that smaller ink nanoparticles had traveled to the lymph nodes - which leads to chronic enlargement of those lymph nodes, as well as lifelong exposure. From Science Daily:

Nanoparticles from tattoos travel inside the body, scientists find

The elements that make up the ink in tattoos travel inside the body in micro and nanoparticle forms and reach the lymph nodes according to a study published in Scientific Reports on 12 September by scientists from Germany and the ESRF, the European Synchrotron, Grenoble (France). 

The reality is that little is known about the potential impurities in the colour mixture applied to the skin. Most tattoo inks contain organic pigments, but also include preservatives and contaminants like nickel, chromium, manganese or cobalt. Besides carbon black, the second most common ingredient used in tattoo inks is titanium dioxide (TiO2), a white pigment usually applied to create certain shades when mixed with colorants. TiO2 is also commonly used in food additives, sun screens, paints. Delayed healing, along with skin elevation and itching, are often associated with white tattoos, and by consequence with the use of TiO2. 

"We already knew that pigments from tattoos would travel to the lymph nodes because of visual evidence: the lymph nodes become tinted with the colour of the tattoo. It is the response of the body to clean the site of entrance of the tattoo. What we didn't know is that they do it in a nano form, which implies that they may not have the same behaviour as the particles at a micro level. And that is the problem: we don't know how nanoparticles react," explains Bernhard Hesse, one of the two first authors of the study and ESRF visiting scientist.

X-ray fluorescence measurements on ID21 allowed the team to locate titanium dioxide at the micro and nano range in the skin and the lymphatic environment. They found a broad range of particles with up to several micrometres in size in human skin but only smaller (nano) particles transported to the lymph nodes. This may lead to the chronic enlargement of the lymph node and lifelong exposure [Original study.]

The following was written by Dr. Desmond Tobin, Prof. of Cell Biology and Director of Skin Sciences at Univ. of Bradford, UK about new emerging health concerns about tattoos. From The Conversation:

Trend for larger tattoos masks a deeper problem of toxins and skin

While the potential dangers of too much sun on the skin are well known, what about the new skin fashion-du-jour – tattoosIt’s fair to say there has been a veritable explosion in tattooing in the West over the past 20 years. As  much as 10% of the general population is now tattooed, rising to almost one in four young adults, mostly driven by an apparent urge for subgroup identity/branding or aesthetics. 

Tattooing may seem like just a piece of skin art, but it involves the deep injection of potentially toxic chemicals into the skinAnd as larger swathes of the body are covered, what might be the unintended consequences of this? While some design choices could do with regulation, the only regulated tattoo-associated activity is infection control, in other words cleanliness.

Tattoo needles pierce through the epidermis, the skin’s top layer, (sometimes to depths as much as 2mm) and into the dermis below to deliver their inks. There is no doubt that certain ink constituents can be toxic (as a 2012 survey for the Danish Environmental Protection Agency found) and some ink manufacturers have acknowledged that some tattoo studios use inks containing carcinogenic compounds. These are being injected directly into the skin.

We’ve also been studying how our skin relates to ink pigments and their associated chemicals. With colleagues Colin Grant and Pete Twigg, specialists in the use of atomic force microscopes (AFM) and tissue mechanics, we’ve been taking a closer look at tattoos, and the greater reaction of these pigments in nano-particle form. In particular we and others are concerned that ink nano-particles, which we know can leave the skin over time (most likely via the skin’s dense network of blood and lymphatic vessels) end up in other organs of the body.

In the laboratory we’ve submitted research that shows that exposure of fibroblasts (the cells that make collagen in skin) with tattoo ink (even when highly diluted) significantly reduces their viability. Collagen is the body’s main connective tissue, and nano-particles of tattoo (50-150nm diameter) can become embedded in the collagenous network of the dermis. Later the ink particles appear around blood vessels.

There is much to learn about this subject. We’re only just beginning to look at the potential medical complications of tattooing including infections, carcinogenic properties, the potential for ink to cause mutations and allergies, and there is already emerging concern that tattoo ink-associated chemicals can be rendered more unstable by attempts to remove them, especially by lasers.