Skip to content

Antibiotics May Not Work If Bacteria Change Their Shape

Everyone is concerned with the problem of antibiotics not working due to antibiotic resistance, that is, when bacteria resist the effects of antibiotics. Researchers typically study genetic changes that occur in bacteria over time, but researchers at Newcastle University in the UK found evidence for a another reason that antibiotics may not work in treating an infection. They found that bacteria can change shape and shed their cell walls, which are their outermost defense and the primary target of most antibiotics. Then when the antibiotics are stopped, they can go back to their original shape. Sneaky!

The researchers suggest that in the future we may have to treat infections with combined antibiotics, that is use antibiotics that kill bacteria with cell walls and also antibiotics that kill bacteria forms without cell walls (called L-forms).

Excerpts from  the study researcher Katarzyna Mickiewicz's post in The Conversation: Antibiotic resistance: researchers have directly proven that bacteria can change shape inside humans to avoid antibiotics  

Widespread antibiotic use is largely to blame for the emergence of antibiotic resistant bacteria, which is currently one of the biggest threats to global health. Not only does antibiotic resistance already cause an estimated 700,000 deaths a year, it’s also made numerous infections, including pneumonia, tuberculosis, and gonorrhoea, harder to treat. ...

However, our research has focused on another little known method that bacteria use to become antibiotic resistant. We have directly shown that bacteria can “change shape” in the human body to avoid being targeted by antibiotics – a process that requires no genetic changes for the bacteria to continue growing.

Virtually all bacteria are surrounded by a structure called the cell wall. The wall is like a thick jacket which protects against environmental stresses and prevents the cell from bursting. It gives bacteria a regular shape (for example, a rod or a sphere), and helps them divide efficiently.

Human cells don’t possess a cell wall (or “jacket”). Because of this, it’s easy for the human immune system to recognise bacteria as an enemy because its cell wall is noticeably different. And, because the cell wall exists in bacteria but not in humans, it’s an excellent target for some of our best and most commonly used antibiotics, such as penicillin. In other words, antibiotics targeting the wall can kill bacteria without harming us.

However, bacteria can occasionally survive without their cell wall. If the surrounding conditions are able to protect the bacteria from bursting, they can turn into so-called “L-forms”, which are bacteria that don’t have a cell wall. These bacteria were discovered in 1935 by Emmy Klieneberger-Nobel, who named them after the Lister Institute where she was working at the time.

In a lab, we often use sugar to create a suitably protective environment. In the human body, this change in form is typically triggered by antibiotics that target the bacteria’s cell wall, or certain immune molecules – such as lysozyme, a molecule that’s present in our tears which helps protect us from bacterial infections.

Bacteria without a cell wall often become fragile and lose their regular shape. However, they also become partially invisible to our immune system, and completely resistant to all types of antibiotics that specifically target the cell wall.

Scientists long suspected that L-form switching might contribute to recurrent infections by helping bacteria hide from the immune system and resist the antibiotics. However, it was difficult to find evidence for this theory due to the elusive nature of L-forms and lack of appropriate methods to detect them.

Our study, published in Nature Communications, looked specifically at bacterial species associated with recurrent urinary tracts infections (UTIs). It found that many different bacterial species – including E. coli and Enterococcus  – can indeed survive as L-forms in the human body. This is something that has never been directly proven before. We were able to detect these sneaky bacteria using fluorescent probes that recognise bacterial DNA.

We tested urine samples from elderly patients with recurrent UTIs by growing them in a petri dish high in sugars. Not only did this environment help protect bacteria from bursting, it also isolated the L-form bacteria that were present in these samples. In a separate experiment, we were able to see the whole process take place in living zebrafish embryos in the presence of antibiotics.

Importantly, our study shows that antibiotics need to be tested in conditions more reflective of the human body. The ones that are currently used in the medical laboratory don’t provide enough protection for delicate L-forms to survive.

Leave a Reply

Your email address will not be published. Required fields are marked *