Skip to content

Think that BPA-free products are safe? Oops... it doesn't look like it. The most common replacement for the commonly used chemical compound BPA (bisphenol A) is BPS (bisphenol S). But it has become very clear that both are hormone disrupting chemicals with numerous and harmful health effects, especially reproductive disorders.

BPA and BPS are plasticizers used in products all around us, for example in food packaging containers, water bottles, baby bottles, can linings, toys, personal care products, cash receipts, dental sealants and on and on. Because it leaches out of products, BPA has been detected in the urine of nearly every person tested, as well as in breast milk, amniotic fluid, the placenta, and the blood of pregnant women (meaning it's getting to developing babies and causing effects).

Thus the desire for BPA-free products, and why industry has substituted chemically related BPS. But BPA-free doesn't mean it's safe or without problems if BPS or BPSIP (another chemically related substitute) are used. Similar chemicals often cause similar problems, which is what is happening. BPS is also being found in the urine of the great majority of people tested (which means humans are being widely exposed to it).

Research using BPS has been worrying - it actually seems to be worse for health than BPA. The latest research (by University Of Guelph researchers), which was conducted on mice, suggests that BPS has rapid effects (in a negative way) on heart functioning. Within minutes of exposure (at levels comparable to typical human exposure), heart function worsened, especially in female mice.

What can you do to lower exposure to hormone disruptors BPA and BPS? One can't avoid chemicals such as BPA and BPS totally, but you can definitely lower your exposure by taking the following steps (as much as possible). The good news is that BPA and BPS leave the body rapidly - so the goal should be to try to limit new exposure.

SOME STEPS FOR LOWERING EXPOSURE: 1) Assume that a "BPA-free" product is using similar hormone disruptors (such as BPS) and so avoid it. 2) Buy and store food in glass or stainless steel containers (and not in plastic containers). 3) Use ceramic or glass plates in the microwave. Don't use any sort of plastic containers or pouches in the microwave. 4) Use fragrance-free products. Avoid products with fragrances in them, including air fresheners, scented candles, detergents, dryer sheets, and personal care products. 5) Avoid flexible vinyl (e.g. shower curtains - use cloth shower curtains and liners instead), 6) Use glass baby bottles, and 6) Wash hands before eating (everything gets on the hands!).

From Medical Xpress: BPA replacement hinders heart function, study reveals   ...continue reading "Is the Replacement For BPA Even Worse?"

 The research finding of dogs having elevated levels of the endocrine disruptor bisphenol A (BPA) from eating canned food mirrors what is happening to humans - eating canned food raises BPA levels in a person. The study also found that elevated BPA levels resulted in changes in the gut microbiome (the community of microbes living in the gut). Specifically, they found the abundance of a number of bacteria species increased or decreased depending on BPA levels in the dogs. This is not good.

This is of concern because BPA  is linked to a variety of health problems. [See all posts.] So it's best to minimize exposure to BPA, BPS, and other hormone disrupting chemicals, and also "BPA-free" products (which usually contain BPS). The BPA is in the lining of the cans used in canned food, and this leaches into the food. Unfortunately, dog food cans thought to be BPA-free in the study also contained BPA, which then leached into the dog food.  From Futurity:

Dogs have 3X more BPA after eating canned food

Researchers saw a three-fold increase in BPA levels in dogs who ate canned dog food for two weeks. They also saw changes in the dogs’ gut microbesBisphenol A (BPA) is a widely used industrial chemical found in many household items, including resins used to line metal storage containers, such as food cans. The chemical can disrupt hormones and is linked to a range of health problems. “Bisphenol A is a prevalent endocrine-disrupting chemical found in canned foods and beverages,” says Cheryl Rosenfeld, an associate professor of biomedical sciences in the University of Missouri College of Veterinary Medicine....

Dog owners volunteered their healthy pets for the study. Blood and fecal samples were collected prior to the dogs being placed on one of two commonly used, commercial canned food diets for two weeks; one diet was presumed to be BPA-free. Robert Backus, an associate professor in the veterinary medicine and surgery in the College of Veterinary Medicine, and other researchers on the team then analyzed the cans and the food contained in the cans for BPA levels and performed gut microbiome assessments.

“The dogs in the study did have minimal circulating BPA in their blood when it was drawn for the baseline,” Rosenfeld says.“However, BPA increased nearly three-fold after being on the either of the two canned diets for two weeks. We also found that increased serum BPA concentrations were correlated with gut microbiome and metabolic changes in the dogs analyzed. Increased BPA may also reduce one bacterium that has the ability to metabolize BPA and related environmental chemicals.”

“We share our homes with our dogs,” Rosenfeld says. “Thus, these findings could have implications and relevance to humans. Indeed, our canine companions may be the best bio-sentinels for human health concerns.”

A chemical frequently used in place of BPA called BPS (bisphenol S) and found in "BPA-free" products is also an endocrine disruptor. This also has negative health and behavioral effects. In this study the effects were seen in mice, but they are worrisome. Makes you wonder, what are all the effects in humans? From Science Daily: Plastics compound, BPS, often substituted for BPA, alters mouse moms' behavior and brain regions

In the first study of its kind, environmental health scientists and neuroscientists examined the effects of the compound bisphenol S (BPS) on maternal behavior and related brain regions in mice. They found subtle but striking behavior changes in nesting mothers exposed during pregnancy and lactation and in their daughters exposed in uteroBPS, found in baby bottles, personal care products and thermal receipts, is a replacement chemical for BPA and was introduced when concern was raised about possible health effects of that plastic compound.

More bad news about BPA (bisphenol A) - an endocrine disrupter linked to a number of health problems, including reproductive disorders (here, here, and here). A new study has lent support for a  link between bisphenol A (BPA) exposure during pregnancy and later breast cancer. BPA can cross the placenta in the womb, and so expose the fetus, it has been found in placental tissue, and newborns can be exposed through breastfeeding. BPA is found in the urine of about 95% of the U.S. population.

It's hard to avoid BPA because it's found in so many products, but a person can lower exposure to it by avoiding canned products (it's in the can linings), as well as plastic bottles and containers, microwaving or heating food in plastic containers, and fast food (it's in the packaging and leaches into the food) . Glass and stainless steel is OK for storing food. By the way, BPA substitutes such as BPS  and BPSIP have the same negative health effects (because they're chemically similar) - so also avoid "BPA-free" products. From Endocrine News;

A Pervasive Threat: The Danger of in utero BPA Exposure

A new study presented at ENDO [Endocrine Society] 2016 revealed a possible link between bisphenol A exposure in utero to breast cancer later in life. In the process, the researchers created a new bioassay that can test chemicals much faster than typical animal studies. Almost every single person alive today has detectable amounts of endocrine-disrupting chemicals (EDCs) in his or her body, according to the 2015 joint Endocrine Society/IPEN publication Introduction to Endocrine Disrupting Chemicals (EDCs): A Guide for Public Interest Organizations and Policy-Makers.

These EDCs — phthalates (plasticizers), bisphenol A (BPA), polychlorinated biphenyls (PCBs), and others, in their bodies — are hormone-like industrial chemicals that did not even exist 100 or so years ago. Studies on human populations consistently demonstrate associations between the presence of certain chemicals and higher risks of endocrine disorders such as impaired fertility, diabetes, obesity, cardiovascular disorders, and cancer.

The xenoestrogen BPA is especially prevalent as a component used in rigid plastic products such as compact discs, food and beverage containers, food and formula can linings, and glossy paper receipts. In the case of food containers, when they are heated or scratched, the BPA can seep out into the food and then be ingested. BPA also escapes from water pipes, dental materials, cosmetics, and household products among others and is released into the environment or directly consumed. According to research, such exposures help account for why BPA has been found in the urine of a representative sample of 95% of the U.S. population.

Notably, BPA can cross the placenta in the womb, indirectly exposing the fetus — it has been found in both maternal and fetal serum as well as neonatal placental tissue. Newborns can also be directly exposed through breastfeeding.

The results of a study presented at ENDO 2016 provide compelling support for the idea that fetal exposure to BPA might increase risk for development of breast cancer in adulthood; in fact, it may explain why overall incidence increased in the 20th century. Lucia Speroni, PhD, a research associate and member of the Soto-Sonnenschein lab at Tufts University School of Medicine in Boston and the study’s lead investigator, reports, “We found that BPA acts directly on the mammary gland and that this effect is dose dependent: A low dose significantly increased ductal growth, whereas a high dose decreased it.”

“Because these effects are similar to those found when exposing the fetus through its mother, our experiment suggests that BPA acts directly on the fetal mammary gland, causing changes to the tissue that have been associated with a higher predisposition to breast cancer later in life,” Speroni explains. In replicating the process of mammary gland development in vitro, this method additionally allows for live observation throughout the whole process.....The lab team had previously shown that the most harmful time for exposure to BPA is during fetal development by causing alterations in the developing mammary gland.