Skip to content

More bad news about BPA (bisphenol A) - an endocrine disrupter linked to a number of health problems, including reproductive disorders (here, here, and here). A new study has lent support for a  link between bisphenol A (BPA) exposure during pregnancy and later breast cancer. BPA can cross the placenta in the womb, and so expose the fetus, it has been found in placental tissue, and newborns can be exposed through breastfeeding. BPA is found in the urine of about 95% of the U.S. population.

It's hard to avoid BPA because it's found in so many products, but a person can lower exposure to it by avoiding canned products (it's in the can linings), as well as plastic bottles and containers, microwaving or heating food in plastic containers, and fast food (it's in the packaging and leaches into the food) . Glass and stainless steel is OK for storing food. By the way, BPA substitutes such as BPS  and BPSIP have the same negative health effects (because they're chemically similar) - so also avoid "BPA-free" products. From Endocrine News;

A Pervasive Threat: The Danger of in utero BPA Exposure

A new study presented at ENDO [Endocrine Society] 2016 revealed a possible link between bisphenol A exposure in utero to breast cancer later in life. In the process, the researchers created a new bioassay that can test chemicals much faster than typical animal studies. Almost every single person alive today has detectable amounts of endocrine-disrupting chemicals (EDCs) in his or her body, according to the 2015 joint Endocrine Society/IPEN publication Introduction to Endocrine Disrupting Chemicals (EDCs): A Guide for Public Interest Organizations and Policy-Makers.

These EDCs — phthalates (plasticizers), bisphenol A (BPA), polychlorinated biphenyls (PCBs), and others, in their bodies — are hormone-like industrial chemicals that did not even exist 100 or so years ago. Studies on human populations consistently demonstrate associations between the presence of certain chemicals and higher risks of endocrine disorders such as impaired fertility, diabetes, obesity, cardiovascular disorders, and cancer.

The xenoestrogen BPA is especially prevalent as a component used in rigid plastic products such as compact discs, food and beverage containers, food and formula can linings, and glossy paper receipts. In the case of food containers, when they are heated or scratched, the BPA can seep out into the food and then be ingested. BPA also escapes from water pipes, dental materials, cosmetics, and household products among others and is released into the environment or directly consumed. According to research, such exposures help account for why BPA has been found in the urine of a representative sample of 95% of the U.S. population.

Notably, BPA can cross the placenta in the womb, indirectly exposing the fetus — it has been found in both maternal and fetal serum as well as neonatal placental tissue. Newborns can also be directly exposed through breastfeeding.

The results of a study presented at ENDO 2016 provide compelling support for the idea that fetal exposure to BPA might increase risk for development of breast cancer in adulthood; in fact, it may explain why overall incidence increased in the 20th century. Lucia Speroni, PhD, a research associate and member of the Soto-Sonnenschein lab at Tufts University School of Medicine in Boston and the study’s lead investigator, reports, “We found that BPA acts directly on the mammary gland and that this effect is dose dependent: A low dose significantly increased ductal growth, whereas a high dose decreased it.”

“Because these effects are similar to those found when exposing the fetus through its mother, our experiment suggests that BPA acts directly on the fetal mammary gland, causing changes to the tissue that have been associated with a higher predisposition to breast cancer later in life,” Speroni explains. In replicating the process of mammary gland development in vitro, this method additionally allows for live observation throughout the whole process.....The lab team had previously shown that the most harmful time for exposure to BPA is during fetal development by causing alterations in the developing mammary gland.

 Studies are accumulating evidence that the hormone disrupting effects of compounds BPA (bisphenol A) and BPS (the common substitute for BPA) have numerous negative health effects in humans, including reproductive disorders. But now a second BPA substitute - BPSIP - is also being found in humans, and may be even more persistent than BPA and BPS. This is because they're all chemically similar, and all three are endocrine disruptors. This article points out that they have slightly different effects, and when we are exposed to more than one of them (which we are), then the health effects will be even more worrisome.

Unfortunately these plasticizers are in products all around us, and so detected within almost all of us. They're in food packaging containers (and therefore in food), water bottles, can linings, toys, personal care products, thermal paper products such as cash receipts, etc. Canned foods are considered one of the most significant routes of human exposure to bisphenol A (BPA).

Other endocrine disruptors include phthalates - so read personal care product labels to avoid these. Another way to lower exposure to endocrine disruptors is to buy and store food not in plastic containers, but in glass containers or stainless steel. Don't microwave food in any sort of plastic containers. Avoid products with fragrances in them, including air fresheners. Avoid flexible vinyl (e.g. shower curtains). (For all posts on endocrine disruptors, and an article from National Institutes of Health.) From PLOS Biology:

Wreaking Reproductive Havoc One Chemical at a Time

Bisphenol A (BPA), unlike DES, remained obscure until the 1950s, when chemists tapped it to make polycarbonate plastics and epoxy resins. BPA now tops the list of high-volume chemicals, and is found in numerous consumer products, including water bottles, food packaging containers and can linings, and thermal paper products like cash receipts and boarding passes (Fig 1). And because it can leach out of products, it’s been detected in the urine of nearly every person tested. It’s also been found in breast milk, follicular and amniotic fluid, cord blood, placental tissue, fetal livers, and the blood of pregnant women.

Hundreds of studies have associated the BPA levels found in most of us with reproductive disorders, cancers, obesity, and other adverse effects in both animals and humans. Although chemical manufacturers with a stake in the $16 billion BPA market continue to question this evidence, they’ve responded to safety concerns by offering BPA-free alternatives. But as a recent study in PLOS Genetics [1] shows, the new versions seem an awful lot like the original. When one chemical comes under scrutiny, manufacturers often substitute compounds with similar structures to save time and money. But similar structures often cause similar problems. And that’s exactly what the PLOS Genetics authors found.

Thinking BPA’s replacement, bisphenol S (BPS), might target the same pathways, Patrick Allard and his colleagues at the University of California at Los Angeles compared the effects of both substances....But, surprisingly, the authors say, the two bisphenols gummed up the works through somewhat different molecular steps. That means simultaneous exposure to BPA and BPS could potentially cause even more reproductive harm. Future studies will need to confirm this possibility, but it’s an unsettling prospect given the ubiquity of BPA and increasing use of BPS, which has already been found in food, shampoo, face cream and other personal care products, soil, and thermal paper products.

And now there’s another “safer” alternative to worry about, researchers reported in Environmental Health Perspectives [2]. Suspecting that cashiers would face higher exposures on the job, the authors screened their urine, blood, and receipts (as well as people who didn’t handle receipts) for BPA, BPS, and another analog called BPSIP. Cashiers’ BPA levels after work were highly variable, likely resulting from its widespread use, but levels of BPS and BPSIP were higher in most cases. Both BPS and BPSIP were also detected in people who weren’t cashiers....The authors were also surprised to see BPSIP in cashiers’ blood more often than the other compounds, suggesting it may be more persistent and our exposure more widespread than previously assumed. BPSIP’s health effects are unknown.

Much more is known about BPA’s estrogenic powers. Earlier this year Pat Hunt, who was among the first to report BPA’s ability to scramble mouse eggs [3], reported similar problems in mouse sperm in PLOS Genetics [4]. Low sperm counts, undescended testicles, malformed penises, and other reproductive anomalies have risen in recent decades, suggesting environmental estrogens may play a role. Hunt’s team investigated this possibility by exposing newborn male mice to BPA or a stronger synthetic estrogen, ethinyl estradiol, just when sperm differentiation begins. BPA exposure disrupts meiosis in males as it does in female mice, the authors discovered, but in different ways....

Health researchers are especially concerned about environmental contaminants that reach the womb during critical windows when even the slightest disturbance can rewire developmental programs to produce profound, irreversible changes that can take years to appear. These changes can cause a plethora of chronic health problems, including diabetes, cardiovascular disorders, birth defects, and cancer.