Skip to content

Even though many, many personal care products contain parabens, the evidence is accumulating that parabens have negative health effects. And now research suggesting that perhaps they may be a factor in developing breast cancer. This latest study was done "in vitro" - meaning looking at the effects of chemicals on human breast cells (in culture dishes), but the results absolutely should make someone think twice about all the parabens in products, and how they accumulate in us. Research has already found parabens in the human breast, but many thought that the levels were too low to promote cancer.

Parabens are common ingredients in cosmetics, shampoos, body lotions and sunscreens, where they are used to prevent microbial growth and prolong shelf life.  Common names of parabens are: methylparaben, ethylparaben, propylparaben, and butylparaben. Detectable levels of multiple parabens are present in human urine and breast tissue. Bottom line: Parabens are endocrine disrupting chemicals that mimic estrogens and may have effects at very low doses to stimulate breast cancer cell growth. So read labels of personal care products and avoid those with parabens. From Futurity:

New Tests Suggest Parabens Carry Cancer Risk

A group of chemicals called parabens—common ingredients in personal care products—may interact with growth factors in the body to increase the risk of breast cancer, according to new research. Parabens are preservatives widely used in everything from shampoos and cosmetics to body lotions and sunscreens. The chemicals have generated increasing health concerns, however, because they mimic estrogens, which have been linked to an increased risk of breast cancer and reproductive problems.

“Although parabens are known to mimic the growth effects of estrogens on breast cancer cells, some consider their effect too weak to cause harm,” says lead investigator Dale Leitman, a gynecologist and molecular biologist at the University of California, Berkeley, and an adjunct associate professor of nutritional sciences and toxicology. “But this might not be true when parabens are combined with other agents that regulate cell growth.”

Existing chemical safety tests, which measure the effects of chemicals on human cells, look only at parabens in isolation, he says. They fail to take into account that parabens could interact with other types of signaling molecules in the cells to increase breast cancer risk.

To better reflect what goes on in real life, Leitman and his colleagues looked at breast cancer cells expressing two types of receptors: estrogen receptors and HER2. Approximately 25 percent of breast cancers produce an abundance of HER2, or human epidermal growth factor receptor 2. HER2-positive tumors tend to grow and spread more aggressively than other types of breast cancer.

The researchers activated the HER2 receptors in breast cancer cells with a growth factor called heregulin that is naturally made in breast cells, while exposing the cells to parabens. Not only did the parabens trigger the estrogen receptors by turning on genes that caused the cells to proliferate, but also the effect was significant. The parabens in the HER2-activated cells were able to stimulate breast cancer cell growth at concentrations 100 times lower than in cells that were deprived of heregulin.

The study demonstrates that parabens may be more potent at lower doses than previous studies have suggested, which may spur scientists and regulators to rethink the potential impacts of parabens on the development of breast cancer, particularly on HER2 and estrogen receptor positive breast cells. The findings also raise questions about current safety testing methods that may not predict the true potency of parabens and their effects on human health.

 More and more studies are finding negative health effects from hormone disrupting chemicals (which we are exposed to every single day, and subsequently which are in all of us), such as parabens, phthalates, Bisphenol-A (BPA), and chemical substitutes for BPA such as Bisphenol-S (BPS) and BPF.  The last post had some recent studies that looked at health effects of hormone disrupting chemicals. The following article points out some of the many difficulties in developing packaging that is safe and doesn't leach endocrine disrupting chemicals or even other chemicals.

We generally focus on hormone disrupting chemicals in plastic bottles or metal cans (which their epoxy liners), but other parts of packaging may (or may not) also leach chemicals. Some leaching may occur with the adhesives used to seal foil pouches, and the polypropylene inner layers also may leach stabilizers. Glass jars are OK, but jar lids may be equipped with BPA-based epoxy liners and/or gaskets that leach plasticizers. Greaseproof wrappers may leach poly- and perfluorinated compounds used to make some packaging greaseproof (may occur if packaging is from India and China - because it is legal to import into USA and use).  Some ceramic kitchenware - the glazes used in artisanal pottery and older mass produced ceramics may leach toxic metals, especially lead. There can even be "offset migration" which occurs when the printed outer surface of food packaging transfers chemicals to the inner food-contact surface.  Whew...

Bottom line: Even BPA alternatives (labeled BPA-free) should be viewed as the same as BPA (as endocrine disruptors) - in other words, currently there are no good BPA substitutes. Read labels and try to minimize plastics in personal care products (e.g., lotion, fragrances) and your food if possible (e.g., choose glass, stainless steel, wax paper, aluminum foil). This is especially important during pregnancy.  Don't microwave food in a plastic dish or container, or covered with plastic wrap. Eat fresh foods and try to avoid soda cans and other packaged, processed foods, especially in plastic containers or metal cans. From Environmental Health Perspectives: A Hard Nut to Crack: Reducing Chemical Migration in Food-Contact Materials

When we buy food, we’re often buying packaging, too. From cherries to Cheez-It® crackers, modern foods are processed, transported, stored, and sold in specialized materials that account, on average, for half the cost of the item, according to Joseph Hotchkiss, a professor in Michigan State University’s School of Packaging. Consumer-level food packaging serves a wide range of functions, such as providing product information, preventing spoilage, and protecting food during the journey from production to retail to pantry, fridge, or freezer. That’s why food producers lavish so much time and money on it.

But what happens when these valuable and painstakingly engineered containers leach chemicals and other compounds into the food and drink they’re designed to protect? Such contamination is nearly ubiquitous; it happens every day, everywhere packaged food is found, with all common types of packaging, including glass, metal, paper, and plastic. Even as awareness of the issue grows, large-scale solutions that are scientifically and financially viable remain out of reach. The challenges in reaching them are many.  ...continue reading "Chemicals Migrate From Containers to Food"

A report released this week by the Endocrine Society states that the list of health problems that scientists can confidently link to exposure to hormone-disrupting chemicals has grown to include: diabetes, cardiovascular disease, obesity, reproductive and developmental problems, thyroid impairment, certain reproductive cancers, and neurodevelopmental problems such as decreased IQ. This statement (report) is based on the summaries of 1300 studies on endocrine disrupting chemicals (EDCs), and it also adds support to the idea that even minute doses of these chemicals can interfere with the activity of natural hormones, which play a major role in regulating physiology and behavior. The statement also stated that most industrial chemicals released into the environment—numbering in the tens of thousands—have never been tested for endocrine-disrupting potential. EDCs include such common chemicals as bisphenol A (BPA), phthalates, parabens, some pesticides (e.g., atrazine), flame retardants, some persistent organic pollutants, and dioxins.

Where are endocrine disruptors found? People are exposed to chemicals with estrogenic effects in their everyday life, because endocrine disrupting chemicals are found in low doses in thousands of products. Many plastic products, including those advertised as "BPA free", have been found to leach endocrine-disrupting chemicals (the substitute chemicals are no better than BPA, and may be worse). Examples: plastic food containers which then leach into foods, linings of metal beverage, formula, and food cans, soft plastic toys, dental sealants, consumer goods, receipts, personal care products that contain parabens or phthalates (e.g., found in lotions,sunscreens, fragrances), household products (such as cleaning products, vinyl shower curtains) , cars (that new car smell in car interiors), etc. Americans love plastics, but there is a serious human health cost.

NOTE: To minimize EDC exposure - try to avoid plastic food and beverage containers. Instead try to use glass, stainless steel, or ceramics. Eat as many unprocessed and fresh foods as possible. Use cloth shower curtains. Read labels and avoid BPA, phthalates, parabens. Avoid fragrances. Don't use or buy non-stick pans, stain and water-resistant coatings on clothing, furniture and carpets. When buying new furniture, check that it doesn't have added fire retardants.

Of course any public discussion of the harms from endocrine disrupting chemicals, as well as the newly released Endocrine Society report, is drawing sharp criticisms from the chemical industry (especially the American Chemistry Council, the largest trade group for the chemicals industry). Of course. We all know that the lobbying efforts by the chemical industry to suppress and deny the evidence of harm to humans from EDCs has been and will continue to be massive. Sadly, but at this point EDCs are found in almost everyone on earth. More about the report, from Science Daily:

Chemical exposure linked to rising diabetes, obesity risk

Emerging evidence ties endocrine-disrupting chemical (EDC) exposure to two of the biggest public health threats facing society -- diabetes and obesity. EDCs contribute to health problems by mimicking, blocking or otherwise interfering with the body's natural hormones. By hijacking the body's chemical messengers, EDCs can alter the way cells develop and grow. Known EDCs include bisphenol A (BPA) found in food can linings and cash register receipts, phthalates found in plastics and cosmetics, flame retardants and pesticides. The chemicals are so common that nearly every person on Earth has been exposed to one or more.  ...continue reading "New Report About Harms of Endocrine Disruptors"

Finding endocrine disrupting chemicals in 2 out of 10 baby teethers, which are supposedly safe products for babies, is disturbing. Unfortunately the study did not give the manufacturers names. There was even an 11th teether made of natural rubber that was found to leach compounds that were "cytotoxic"(toxic to living cells), but the manufacturer recalled the product before the study results were published. One of the teethers leaching parabens was made of EVA plastic filled with a cooling gel, and the researchers thought the parabens came from the gel used. Note that this study occurred in Europe where the regulations regarding endocrine disrupting chemicals are stricter than in the USA. The researchers themselves suggest that manufacturers should use "green chemistry" when manufacturing products - that is, design products without using problem ingredients right from the start. Problem solved. From Science Daily:

Endocrine disrupting chemicals in baby teethers

In laboratory tests, two out of ten teethers, plastic toys used to sooth babies' teething ache, release endocrine disrupting chemicals. One product contains parabens, which are normally used as preservatives in cosmetics, while the second contains six so-far unidentified endocrine disruptors

"The good news is that most of the teethers we analyzed did not contain any endocrine disrupting chemicals. However, the presence of parabens in one of the products is striking because these additives are normally not used in plastic toys," says Dr. Martin Wagner, of the Department Aquatic Ecotoxicology at the Goethe University. The substances detected -- methyl, ethyl and propyl parabens -- can act like natural oestrogen in the body and, in addition, inhibit the effects of androgens such as testosterone. The EU Commission recently banned two parabens in certain baby cosmetics, because of concerns over their health effects.

"Our study shows that plastic toys are a source of undesirable chemicals. Manufacturers, regulatory agencies and scientists should investigate the chemical exposure from plastic toys more thoroughly," Wagner concludes from the study. The additives have only limited benefits for the quality of the product, but can represent a potential health issue. This is especially true for babies and infants, whose development is orchestrated by a delicately balanced hormonal control and who are more susceptible to chemicals exposures than adults.

The bottom line is to read the ingredients list on products, and avoid all products labeled "antimicrobial" or "antibacterial" (because those are the ones typically containing triclosan and triclorocarban). Over 2000 products contain antibacterial compounds. I've even seen them in pillows, pillow protectors, mattress pads, dish racks, toys, and blankets! As we know from the latest microbiology research, we need to cultivate a healthy microbiome, and not throw it out of whack by continuously trying to kill off all bacteria. From The Atlantic:

It's Probably Best to Avoid Antibacterial Soaps

Antimicrobial chemicals are so ubiquitous that a recent study found them in pregnant mothers' urine and newborns' cord blood. Research shows that their risks may outweigh their benefits.

Antimicrobial chemicals, intended to kill bacteria and other microorganisms, are commonly found in not just soaps, but all kinds of products—toothpaste, cosmetics, and plastics among them. There is evidence that the chemicals aren’t always effective, and may even be harmful, and their ubiquity means people are often continually exposed to them. One such chemical, triclosan, has previously been found in many human bodily fluids. New research found traces of triclosan, triclocarban, and butyl paraben in the urine of pregnant women, and the cord blood of newborn infants. 

The research looked at the same population of 180 expectant mothers living in Brooklyn, New York, most of Puerto Rican descent. In a study published last week in Environmental Science and Technology, researchers from Arizona State University and State University of New York’s Downstate School of Public Health found triclosan in 100 percent of the women’s urine samples, and triclocarban in 87 percent of the samples. Of the 33 cord blood samples they looked at, 46 percent contained triclosan and 23 percent contained triclocarban.

In another, still-unpublished study, the researchers found that all of the cord blood samples contained “at least one paraben,” according to Dr. Rolf Halden, director of ASU’s Center for Environmental Security. 

Triclosan and triclocarban are endocrine disruptors, Halden explains. The risk there is that the chemicals can mimic thyroid hormones, potentially disrupting the metabolism and causing weight gain or weight loss. Previous research has also shown a connection between higher levels of triclosan in urine, and allergy diagnoses in children.

In the study looking at butyl paraben, the researchers found an association between higher exposure to the chemical, and a smaller head circumference and length of babies after they were born. Butyl paraben is used as a preservative, so it’s found in a wider breadth of products, according to Halden.

From Science News: Pregnant women, fetuses exposed to antibacterial compounds face potential health risks 


As the Food and Drug Administration mulls over whether to rein in the use of common antibacterial compounds that are causing growing concern among environmental health experts, scientists are reporting that many pregnant women and their fetuses are being exposed to these substances. The compounds are used in more than 2,000 everyday products marketed as antimicrobial, including toothpastes, soaps, detergents, carpets, paints, school supplies and toys, the researchers say.

The problem with this, explains Pycke, a research scientist at Arizona State University (ASU), is that there is a growing body of evidence showing that the compounds can lead to developmental and reproductive problems in animals and potentially in humans. Also, some research suggests that the additives could contribute to antibiotic resistance, a growing public health problem.

Although the human body is efficient at flushing out triclosan and triclocarban, a person's exposure to them can potentially be constant. "If you cut off the source of exposure, eventually triclosan and triclocarban would quickly be diluted out, but the truth is that we have universal use of these chemicals, and therefore also universal exposure," says Rolf Halden, Ph.D., the lead investigator of the study at ASU.