Skip to content

A recent study compared saline nasal irrigation vs steam inhalation vs doing both saline irrigation and steam inhalation vs doing neither (the control group) for chronic or recurring sinusitis symptoms. In the study, people with a history of chronic or recurring sinusitis symptoms were randomly assigned to one of the 4 groups, and then studied 3 months and 6 months later. The results were: a modest (slight improvement) in the saline irrigation group in symptom and quality-of-life scores, but no improvement for the steam inhalation group. However, the researchers noted that the control group also had slight improvements at 3 and 6 months. Most of the improvement in the saline irrigation group was in the group that also did steam inhalation - thus perhaps some benefit to combining both.

In addition, patients in the nasal irrigation group reported fewer headaches, fewer of them used over-the-counter medications, and said they were less likely to consult with a physician about their nasal problems in the future when compared with patients in the steam inhalation group.

Most people with chronic or recurring sinusitis will probably agree with the findings. Yes, effects are modest with saline irrigation, but it definitely does improve nasal stuffiness (experiences of family members and readers). But it does NOT treat the sinusitis. The sinus microbial community continues to stay out of whack (dysbiosis). Which explains the researchers' finding that saline irrigation and steam inhalation did not result in differences in antibiotic use or physician visits after 6 months.

From Science Daily: Nasal irrigation may prevent chronic sinus ailments

Advising patient with chronic sinus congestion to use nasal irrigation -- a popular nonpharmacologic treatment -- improved their symptoms, but steam inhalation did not, according to a randomized controlled trial published in CMAJ(Canadian Medical Association Journal). More than 25 million people in the United States and about 2.5 million Canadians suffer from chronic rhinosinusitis, or sinus infection, and experience compromised quality of life. To alleviate symptoms, steam inhalation and nasal irrigation are widely suggested as an alternative to common treatment with antibiotics, which are often not effective and contribute to antibiotic resistance.

Researchers from the United Kingdom conducted a randomized controlled trial on the effectiveness of advice from primary care physicians to use nasal irrigation and/or steam inhalation for chronic sinusitis. The study involved 871 patients from 72 primary care practices in England who were randomly assigned to 1 of 4 advice strategies: usual care, daily nasal and saline irrigation supported by a demonstration video, daily steam inhalation, or combined treatment with both interventions.

Patients who were instructed to use nasal irrigation showed improvement at 3 and 6 months, as measured by the Rhinosinusitis Disability Index. Steam inhalation did not appear to alleviate symptoms of sinusitis.

"We found potentially important changes in other outcomes; in particular, fewer participants in the nasal irrigation group than in the no-irrigation group had headaches, used over-the-counter medications and intended to consult a doctor in future episodes," write the authors. "Although there was no significant difference in either physician visits or antibiotic use, as might be expected over only a 6-month follow-up period, our findings concerning consultations are important in the longer term, given antibiotic use increases the risk of antimicrobial resistance."

The Abstract (summary) of the study, which is from the Canadian Medical Association Journal (CMAJ): Effectiveness of steam inhalation and nasal irrigation for chronic or recurrent sinus symptoms in primary care: a pragmatic randomized controlled trial

ABSTRACT  Background: Systematic reviews support nasal saline irrigation for chronic or recurrent sinus symptoms, but trials have been small and few in primary care settings. Steam inhalation has also been proposed, but supporting evidence is lacking. We investigated whether brief pragmatic interventions to encourage use of nasal irrigation or steam inhalation would be effective in relieving sinus symptoms.

Methods: We conducted a pragmatic randomized controlled trial involving adults (age 18–65 yr) from 72 primary care practices in the United Kingdom who had a history of chronic or recurrent sinusitis and reported a “moderate to severe” impact of sinus symptoms on their quality of life. Participants were recruited between Feb. 11, 2009, and June 30, 2014, and randomly assigned to 1 of 4 advice strategies: usual care, daily nasal saline irrigation supported by a demonstration video, daily steam inhalation, or combined treatment with both interventions. The primary outcome measure was the Rhinosinusitis Disability Index (RSDI). Patients were followed up at 3 and 6 months. We imputed missing data using multiple imputation methods.

Results: Of the 961 patients who consented, 871 returned baseline questionnaires (210 usual care, 219 nasal irrigation, 232 steam inhalation and 210 combined treatment). A total of 671 (77.0%) of the 871 participants reported RSDI scores at 3 months. Patients’ RSDI scores improved more with nasal irrigation than without nasal irrigation by 3 months (crude change −7.42 v. −5.23; estimated adjusted mean difference between groups −2.51, 95% confidence interval −4.65 to −0.37). By 6 months, significantly more patients maintained a 10-point clinically important improvement in the RSDI score with nasal irrigation (44.1% v. 36.6%); fewer used over-the-counter medications (59.4% v. 68.0%) or intended to consult a doctor in future episodes. Steam inhalation reduced headache but had no significant effect on other outcomes. The proportion of participants who had adverse effects was the same in both intervention groups.

Interpretation: Advice to use steam inhalation for chronic or recurrent sinus symptoms in primary care was not effective. A similar strategy to use nasal irrigation was less effective than prior evidence suggested, but it provided some symptomatic benefit.

Another interesting study looking at whether being overweight is linked to premature death, heart attacks, and diabetes. This study looked at sets of twins, in which one is heavier than the other, and followed them long-term (average 12.4 years) and found that NO - being overweight or obese (as measured by Body Mass Index or BMI) is NOT associated with premature death or heart attack (myocardial infarction), but it is associated with higher rates of type 2 diabetes. These results are in contrast with what a large study recently found. From Science Daily:

Higher BMI not associated with increased risk of heart attack or early death, twin study shows

A study of 4,046 genetically identical twin pairs with different amounts of body fat shows that twin siblings with a higher Body Mass Index, as a measure of obesity, do not have an increased risk of heart attack or mortality. The study, conducted by researchers at Umeå University in Sweden, also shows that a higher BMI is associated with an increased risk of type 2 diabetes...."The results suggest that lifestyle changes that reduce levels of obesity do not have an effect on the risk of death and heart attack, which contradicts conventional understandings of obesity-related health risks," says Peter Nordström, researcher at the Department of Community Medicine and Rehabilitation at Umeå University.

In the cohort study, Peter Nordström and research colleagues at Umeå University compared health data from 4,046 monozygotic twin pairs. All twins in the study had different levels of body fat, as measured in BMI....During a follow-up period of on average 12.4 years, differences between the twins were compared when it comes to incidents of mortality, heart attack and type 2 diabetes. The results clearly showed that twin siblings with a higher BMI did not have an increased risk of mortality or heart attack compared to their thinner counterparts. However, twins with a higher BMI did have an increased risk of developing type 2 diabetes.

The results showed that: - Among twin siblings with a higher BMI (mean value 25.1), there were 203 heart attacks (5 %) and 550 deaths (13.6 %) during the follow-up period. - Among twin siblings with a lower BMI (mean value 23.9), there were 209 heart attacks (5.2 %) and 633 deaths (15.6 %) during the same period. - Among the 65 twin pairs in the study who had a BMI difference of 7 or higher, and where the larger twin siblings had a BMI of 30 or higher, there were still no noticeably increased risk of mortality or heart attack associated with a higher BMI.

The study, described in the article Risks of Myocardinal Infarction, Death, and Diabetes in Identical Twin Pairs With Different Body Mass Index, is based on the Swedish Twin Registry, the largest of its kind in the world. The median age of the twins in the study was 57.5 and participants' ages ranged from 42-92. The cohort study was conducted between 1998 and 2003, with follow-ups regarding incident of mortality, heart attack and diabetes during a 10 year period until 2013. One study limitation was that weight and length (used to calculate BMI) was self-reported.

Studies have found that increased nut consumption has been associated with reduced risk of cardiovascular disease and type 2 diabetes. A newly published study looked at large groups of people to see if this was due to nuts reducing systemic inflammation throughout the body - which can be measured by inflammatory biomarkers such as C-reactive protein (CRP) and  interleukin 6 (IL6).

The researchers found that nut consumption was inversely associated with concentrations of biomarkers CRP and IL-6 - that is, the more nuts eaten weekly, the lower the inflammatory biomarkers. They also found that substituting nuts for red meat, processed meat, eggs, refined grains, potatoes, or potato chips was associated with a healthier inflammatory biomarker profile. In the study, one serving of nuts was equivalent to 28 g (1 oz) of peanuts or other nuts. What's in nuts? Unsaturated fatty acids, high quality plant protein, fiber, minerals, vitamins, bioactive compounds such as phytosterols, antioxidants, magnesium, etc. Bottom line: eat a serving of nuts at least several times a week. From Science Daily:

Frequent nut consumption associated with less inflammation

In a study of more than 5,000 people, investigators from Brigham and Women's Hospital have found that greater intake of nuts was associated with lower levels of biomarkers of inflammation, a finding that may help explain the health benefits of nuts. The results of the study appear July 27 in the American Journal of Clinical Nutrition.

"Population studies have consistently supported a protective role of nuts against cardiometabolic disorders such as cardiovascular disease and type 2 diabetes, and we know that inflammation is a key process in the development of these diseases," said corresponding author Ying Bao, MD, ScD, an epidemiologist in BWH's Channing Division of Network Medicine. "Our new work suggests that nuts may exert their beneficial effects in part by reducing systemic inflammation."

Previously Bao and her colleagues observed an association between increased nut consumption and reduced risk of major chronic diseases and even death, but few prospective cohort studies had examined the link between nut intake and inflammation. In the current study, the research team performed a cross-sectional analysis of data from the Nurses' Health Study, which includes more than 120,000 female registered nurses, and from the Health Professionals Follow-Up Study, which includes more than 50,000 male health professionals.... looked at the levels of certain telltale proteins known as biomarkers in blood samples collected from the study participants. They measured three well-established biomarkers of inflammation: C-reactive protein (CRP), interleukin 6 (IL6) and tumor necrosis factor receptor 2 (TNFR2).

After adjusting for age, medical history, lifestyle and other variables, they found that participants who had consumed five or more servings of nuts per week had lower levels of CRP and IL6 than those who never or almost never ate nuts. In addition, people who substituted three servings per week of nuts in place of red meat, processed meat, eggs or refined grains had significantly lower levels of CRP and IL6.

Peanuts and tree nuts contain a number of healthful components including magnesium, fiber, L-arginine, antioxidants and unsaturated fatty acids such as α-linolenic acid. Researchers have not yet determined which of these components, or if the combination of all of them, may offer protection against inflammation, but Bao and her colleagues are interested in exploring this further through clinical trials that would regulate and monitor diet.

Yup, e-cigarettes are NOT harmless, but emit harmful compounds. Researchers detected significant levels of 31 chemical compounds, including nicotine, nicotyrine, formaldehyde, acetaldehyde, glycidol, acrolein, acetol, and diacetyl. Included in the harmful emissions are carcinogens and respiratory irritants. From Science Daily:

All e-cigarettes emit harmful chemicals, but some emit more than others

While previous studies have found that electronic cigarettes emit toxic compounds, a new study from Lawrence Berkeley National Laboratory (Berkeley Lab) has pinpointed the source of these emissions and shown how factors such as the temperature, type, and age of the device play a role in emission levels, information that could be valuable to both manufacturers and regulators seeking to minimize the health impacts of these increasingly popular devices.

The study, which was published in Environmental Science & Technology, found that the thermal decomposition of propylene glycol and glycerin, two solvents found in most "e-liquids" (the substance that is vaporized by the e-cigarette), leads to emissions of toxic chemicals such as acrolein and formaldehyde.

"Advocates of e-cigarettes say emissions are much lower than from conventional cigarettes, so you're better off using e-cigarettes," said Berkeley Lab researcher and the study's corresponding author Hugo Destaillats. "I would say, that may be true for certain users--for example, long time smokers that cannot quit--but the problem is, it doesn't mean that they're healthy. Regular cigarettes are super unhealthy. E-cigarettes are just unhealthy."

One finding was that the first and last puffs produce widely varying emissions. Using a custom-built vaping apparatus emulating realistic vaping habits, researchers drew on the e-cigarette by taking puffs lasting 5 seconds every 30 seconds. They found that vapor temperature rose quickly in the first 5 to 10 minutes until reaching a steady state temperature at around the twentieth puff. Correspondingly, emissions levels between the first few puffs and the steady state increased by a factor of 10 or more in some cases, depending on the device, the battery voltage, and the emitted compound

Because there is an immense variety of e-cigarettes as well as e-liquids, the Berkeley Lab researchers decided to focus on an element that is common to all of them: the solvent in the e-liquid. Almost all e-liquids use a combination of propylene glycol and glycerin in varying proportions as a solvent....The researchers vaporized liquids consisting solely of the solvents to verify that they were the source of the emissions. In all, the researchers detected significant levels of 31 harmful chemical compounds, including two that had never been previously found in e-cigarette vapor--propylene oxide and glycidol, both of which are probable carcinogens.

 Some people have nasal bacteria - Staphylococcus lugdunensis, that kills other disease causing bacteria such as Staphylococcus aureus (including strains of MRSA) and Enterococcus. This is because S. lugdunensis produces a molecule (lugdunin) that acts as an antibiotic. It is thought that 10% of people naturally carry S. lugdunensis in their nasal passages. Will this lead to a new class of antibiotics or to probiotics of the future? Could it help in treating sinusitis? Stay tuned... From Science News:

The nose knows how to fight staph

The human nose harbors not only a deadly enemy — Staphylococcus aureus — but also its natural foe. Scientists have now isolated a compound from that foe that might combat MRSA, the methicillin-resistant strain of S. aureus....Investigating the intense interspecies competition in the nose — where microbes fight for space and access to scant sugars and amino acids — might offer a fertile alternative to searching for new drug candidates in soil microbes.

Despite being a relatively nutrient-poor environment, the human nose is home to more than 50 species of bacteria. One of these is S. aureus, a dominant cause of hospital-acquired infections such as MRSA, as well as infections of the blood and heart. But there’s a huge variability in the nasal microbe scene between individuals: while S. aureus is present in the nasal passages of roughly 30 percent of people, the other 70 percent don’t have any sign of it.

Trying to explain this difference led Peschel and colleagues to study “the ecology of the nose.” They suspected that other nasal inhabitants, well-tuned to compete in that harsh niche, might be blocking S. aureus from colonizing the nose in those who don’t carry it. From nasal secretion samples, the team isolated 90 strains of different Staphylococcus species. Of these, one bacterium, S. lugdunensis, killed S. aureus when the two were grown together in a dish. Introducing a variety of mutations into S. lugdunensis produced a strain that didn’t kill. The missing gene, the team showed, normally produced an antibiotic, which the researchers named lugdunin; it represents the first example of a new class of antibiotic.

Lugdunin was able to fend off MRSA as well as a strain of Enterococcus resistant to the antibiotic vancomycin. Neither bacteria developed resistance. The team also pitted S. lugdunensis against S. aureus in test tube and mouse studies, with S. lugdunensis besting S. aureus. Only 5.9 percent of 187 hospital patients had S. aureus in their noses if they also carried S. lugdunensis, the team found, while S. aureus was present in 34.7 percent of those without S. lugdunensis. Peschel and colleagues also reported the results July 28 in Nature.

Lugdunin cleared up a staph skin infection in mice, but it’s unclear how the compound works. Researchers could not rule out that it damages the cell membrane, which could limit its use in humans to a topical antibiotic. Peschel and coauthor Bernhard Krismer also suggest that the bacterium itself might be a good probiotic, applied nasally, to fend off staph infections in vulnerable hospital patients.  (The original study and accompanying Commentary)

 A compound secreted by the nose-dwelling bacterium Staphylococcus lugdunensis may fight antibiotic-resistant strains of bacteria such as MRSA (pink). CREDIT: NIAID, NIH/WIKIMEDIA COMMONS

Research shows that Streptococcus mutans, the bacteria that is a main cause of tooth decay or dental caries, is passed from mother to child, and also between nonrelative children. Any interaction that involves saliva, like sharing an ice cream cone or drinking from the same cup or straw as another child, can cause the microbes to be transferred. From Medical Xpress:

Research shows sharing of cavity-causing bacteria may not be only from mothers to children

New ongoing research from the University of Alabama at Birmingham Department of Biology and School of Dentistry is showing more evidence that children may receive oral microbes from other, nonrelative children. It was previously believed that these microbes were passed primarily from mother to child, but in a recent study presented at the American Society for Microbiology MICROBE 2016 Meeting in Boston, researchers found that 72 percent of children harbored at least one strain of the cavity-causing Streptococcus mutans not found in any cohabiting family members.

S. mutans is a bacterium that feeds on fermentable carbohydrates, in particular sucrose, that are frequently consumed by humans. After meals, S. mutans produces enamel-eroding acids, which makes S. mutans one of the main causes of tooth decay, or dental caries, in humans.

One hundred nineteen African-American children ages 12-18 months and 5-6 years who lived with at least one family member were a part of the study. The researchers collected samples from children periodically over the course of eight years. Momeni says that dental caries are more prevalent in minorities and low-socioeconomic groups.

"The literature tells us that we usually get this bacterium from our mothers," Momeni said. "This is because we most commonly have more interaction with our mothers when we are very young. However, our data supports that children who interact with other children at school or in nurseries can, and frequently do, contract this bacteria from each other." Momeni says any interaction that involves saliva, like sharing an ice cream cone or drinking after another child from the same cup or straw, can cause the microbes to be transferred.

Forty percent of the children in the study did not share any S. mutans strains with their mothers, and close to 20 percent of children shared these bacteria only with another child who lived in the household, such as a sibling or cousin. It is important to note that, for the strains of S. mutans not shared with anyone in the same household, approximately a third of the children had only a single isolate for a genotype, which could mean these rare strains may have nothing to do with the dental caries, and may be confounding the search for strains associated with the disease.

A new study followed adults with meniscus tears (in the knee), who were randomly assigned to either exercise only or meniscus repair surgery (arthroscopic partial meniscectomy) only. They found that after 2 years there was no difference between those  who just received exercise therapy compared to those who just received meniscus repair surgery. About 19% of the exercise only group decided to get surgery at some point, but the rest stayed in the exercise only group.

The study in BMJ says that the exercise therapy program consisted of progressive neuromuscular and strength exercises over 12 weeks, which were performed between two and a maximum of three sessions each week (24-36 sessions). Once again, a study shows that surgery for a condition may not be necessary. From Science Daily:

Most surgical meniscus repairs are unnecessary

Three out of four people could avoid knee surgery with a new form of exercise therapy, with significant cost savings for society. Injury to the menisci, the cartilaginous discs within the knee joint, can be painful when running, and can cause the knee to give way or 'lock'. Such injuries are troublesome and sometimes painful, and can prevent you from exercising or attending work. A new study shows that exercise therapy is just as effective for treating meniscus injuries as surgery. .

A total of 140 patients with meniscus injuries in Norway and Denmark took part in the study. They drew lots for treatment with either exercise or surgery. Nina Jullum Kise says, "Two years later, both groups of patients had fewer symptoms and improved functioning. There was no difference between the two groups." However, those who had exercised had developed greater muscular strength. This is consistent with previous research, which showed that surgery yielded no additional benefits for patients who had had exercise therapy.... Jullum Kise believes that as many as three in four could be spared surgery with the right exercise therapy programme. 

In the study, the patients attended training sessions with a physiotherapist 2-3 times a week for 12 weeks. "The exercise therapy programme involves a warm up and various types of strength training. It is built up in stages that become more challenging as the patient improves and becomes stronger," explains Dr Jullum Kise. Each patient receives a personalized training programme, and learns to do the exercises under the supervision of a physiotherapist.

Menisci are crescent-shaped discs of cartilage on both sides of the knee joint. The meniscus is a shock absorber that distributes weight across the joint and at the same time stabilizes the joint when you walk or run. "We hope that the stronger muscles of the exercise therapy group may counteract osteoarthritis, a type of arthritis that often occurs in patients who have undergone surgery for a meniscus injury," says Dr Jullum Kise.

 Did you know that some foods have nanoparticles added to them? Which foods? Nanoparticles in foods are ingredients so small that they are measured in nanometers or billionths of one meter. The most common nanoingredients are: titanium dioxide, silicon dioxide, and zinc oxide. What, if anything, do nanoingredients do to humans? That is, are there any effects from ingesting them? No one really knows. However, several articles in the past year raise a number of concerns, especially because so much is still unknown. Meanwhile the use of nanoingredients is unregulated in the U.S., and the number of foods with nanoingredients is growing rapidly.

Nanoparticles are typically used in foods as additives, flavorings, coloring, or even anti-bacterial coatings for packaging. It is thought that nanocoatings are being used on some fruits and vegetables. Even though ingredients such as titanium dioxide are considered to be "generally recognized as safe" (GRAS) before they're made into nanoparticles, the question is whether they’re safe in their nanoparticle form. This is because nanoparticles can exhibit new or altered properties at nanoscale dimensions. Some concerns about nanoparticles are that they are small enough to penetrate the skin, lungs, digestive system, and perhaps pass through the blood-brain barrier and placental-fetal barrier, and cause damage.

A 2016 report by Friends of The Earth reported finding nanoparticles in various brands of baby formulas. None listed nanoparticles as ingredients, but independent laboratory testing found the baby formulas to contain them. The Medscape article (below) reported on recent research  that suggested that nanoingredients can cause problems such as intestinal inflammation, especially for certain groups, such as those with intestinal bowel disease (IBD). According to the Science News article (below): "Tests show that on average more than one-third of the titanium dioxide in foods is in the form of nano-sized particles."

The Center For Food Safety states: "Bulk scale titanium dioxide is used as a food coloring agent, often to make foods look whiter or brighter, but the FDA has not set exposure limits yet for its use at the nano scale in the US. Moreover, the largest review of nano titanium dioxide studies show that many basic questions have not been answered. Candies like M&M’s, processed cheeses, and chewing gum have all been found to contain nano titanium dioxide.  Nano titanium dioxide is small enough to cross through the intestine and into organs where it can damage DNA and disrupt cell function." They have established a searchable data base of foods containing nanoparticles. The list is incomplete, but some popular foods containing nanoingredients (may not be on ingredient list, but lab tests found them) include: M&Ms, Lindt chocolate, Dannon Greek Plain Yogurt, Cadbury Milk Chocolate bars, Nabisco Chips Ahoy cookies, and Nabisco Oreos.

From Medscape [UPDATE: The Medscape link no longer works. Link to original study and to a discussion of the research in The Rheumatologist.]:  Titanium Dioxide Additives May Boost Intestinal Inflammation

Murine [mice] and other studies suggest that titanium dioxide (TiO2) nanoparticles, widely used as food additives and in drug formulations, may be involved in intestinal inflammation, according to Swiss researchers..... "It seems that titanium dioxide nanoparticles are not harmful for a healthy person with a normal intestinal barrier. But this may be different in an individual with impaired intestinal barrier function such as patients with inflammatory bowel disease (IBD).".... IBD is increasing in many nations undergoing westernization. Among possible causes are microparticles of agents such as Ti02, which are used to improve the appearance of products including food.

The researchers go on to point out that there is increasing evidence that exposure to TiO2 "can cause adverse effects, including the production of reactive oxygen species (ROS) inflammatory responses and tumor formation.".....Finally, wrote the investigators, "An increase of titanium burden in blood of patients with ulcerative colitis having active disease was found, evidencing an impaired barrier function and suggesting that TiO2 nanoparticles could pose a specific risk to patients with IBD." ...continue reading "Are Foods Containing Nanoparticles Safe To Eat?"

Everyone lifting light weights during exercise workouts will be heartened by a study that found that lifting light  weights (many times) is just as good as lifting heavy weights in building muscle strength and size. 49 young men, who had been resistance training for at least 2 years, were randomly assigned to either the light weight or heavy weight group and followed for 12 weeks. All of the men gained muscle strength and size, and these gains were almost identical, whether they lifted heavy or light weights.

The researchers decided that the key to getting stronger was muscle fatigue - they had to weight lift until they had almost total muscle fatigue, which researchers refer to as "volitional failure". Whether it was with light or heavy weights didn't make a difference. From Science Daily:

Pumping iron: Lighter weights just as effective as heavier weights to gain muscle, build strength

New research from McMaster University is challenging traditional workout wisdom, suggesting that lifting lighter weights many times is as efficient as lifting heavy weights for fewer repetitions. It is the latest in a series of studies that started in 2010, contradicting the decades-old message that the best way to build muscle is to lift heavy weights. "Fatigue is the great equalizer here," says Stuart Phillips, senior author on the study and professor in the Department of Kinesiology. "Lift to the point of exhaustion and it doesn't matter whether the weights are heavy or light."

Researchers recruited two groups of men for the study -- all of them experienced weight lifters -- who followed a 12-week, whole-body protocol. One group lifted lighter weights (up to 50 per cent of maximum strength) for sets ranging from 20 to 25 repetitions. The other group lifted heavier weights (up to 90 per cent of maximum strength) for eight to 12 repetitions. Both groups lifted to the point of failure.

Researchers analyzed muscle and blood samples and found gains in muscle mass and muscle fibre size, a key measure of strength, were virtually identical....While researchers stress that elite athletes are unlikely to adopt this training regime, it is an effective way to get stronger, put on muscle and generally improve health.

Another key finding was that none of the strength or muscle growth were related to testosterone or growth hormone, which many believe are responsible for such gains."It's a complete falsehood that the short-lived rise in testosterone or growth hormone is a driver of muscle growth," says Morton. "It's just time to end that kind of thinking." 

An interesting study that compared bacterial communities between healthy children and those that have a history of acute sinusitis (but not chronic sinusitis). The study specifically looked at the nasopharyngeal (NP)  microbiome (community of microbes) over the course of one year in the 2 groups of children, who were between the ages of 4 and 7. Nasopharyngeal pertains to the nose or nasal cavity and pharynx. They used modern methods of genetic analysis to test for bacterial species - and found a total of 951 species among the 47 children, of which 308 species had some "depletion" among those children with a history of sinusitis, and one species was increased in "abundance".

NP samples from children with a prior history of acute sinusitis were characterized by significant depletion of bacterial species, including those in the Akkermansia, Faecalibacterium prausnitzii, Clostridium, Lactobacillus, Prevotella, and Streptococcus species. But there was a siignificant increase "in relative abundance" in the bacterial species Moraxella nonliquefaciens. Once again, a study shows bacterial communities to be "out of whack" in those who've had sinusitis - this time in children. And the diminished diversity was linked to more frequent upper respiratory illnesses. The researchers mention the "possibility that the manipulation of the airway microbiota" could help prevent childhood respiratory diseases. Research by C.A. Santee et al from the Microbiome journal at BioMed Central:

Nasopharyngeal microbiota composition of children is related to the frequency of upper respiratory infection and acute sinusitis

Upper respiratory infections (URI) and their complications are a major healthcare burden for pediatric populations. Although the microbiology of the nasopharynx is an important determinant of the complications of URI, little is known of the nasopharyngeal (NP) microbiota of children, the factors that affect its composition, and its precise relationship with URI.

Healthy children (n = 47) aged 49–84 months from a prospective cohort study based in Wisconsin, USA, were examined. Demographic and clinical data and NP swab samples were obtained from participants upon entry to the study. All NP samples were profiled for bacterial microbiota using a phylogenetic microarray, and these data were related to demographic characteristics and upper respiratory health outcomes. The composition of the NP bacterial community of children was significantly related prior to the history of acute sinusitisHistory of acute sinusitis was associated with significant depletion in relative abundance of taxa including Faecalibacterium prausnitzii and Akkermansia spp. and enrichment of Moraxella nonliquefaciens. Enrichment of M. nonliquefaciens was also a characteristic of baseline NP samples of children who subsequently developed acute sinusitis over the 1-year study period. Time to develop URI was significantly positively correlated with NP diversity, and children who experienced more frequent URIs exhibited significantly diminished NP microbiota diversity (P ≤ 0.05). 

These preliminary data suggest that previous history of acute sinusitis influences the composition of the NP microbiota, characterized by a depletion in relative abundance of specific taxa. Diminished diversity was associated with more frequent URIs

....These observations indicate that the composition of the pediatric upper airway represents a critical factor that may either potentiate or protect against infection by respiratory pathogens. They also indicate that the interplay between the bacterial microbiota and respiratory pathogens associated with upper airway infection is important to consider.Both bacteria and viruses can influence each other’s pathogenicity [8] and a number of interactions between specific viruses and bacterial species have been reported in the airways [910]. For example, human rhinovirus infection was found to significantly increase the binding of Staphylococcus aureus, S. pneumoniae, or H. influenzae to primary human nasal epithelial cells [11]....

A total of 951 taxa were identified in baseline NP microbiota of participants (n = 47) in our cohort. These bacterial communities were variably composed of members of the Rickenellaceae, Lachnospiraceae, Verrucomicrobiaceae, Pseudomonadaceae, and Moraxellaceae as well as multiple unclassified members of the phylum Proteobacteria. .... Our study used independent NP samples collected from individual participants over a 12-month study period that spanned all four seasons. Season of sample collection also demonstrated a relationship with bacterial beta-diversity.

Compared with children who had no history of acute sinusitis (n = 33), those with a past history of acute sinusitis (n = 14) did not exhibit differences in α-diversity indices, suggesting that differences in microbiota characterizing these groups may be due to the enrichment or depletion of a subset of taxa within these bacterial communities. A total of 309 taxa (representing 101 genera) exhibited significant differences in relative abundance between children with and without a history of acute sinusitis. NP samples from children with a prior history of acute sinusitis were characterized by significant depletion of 308 of the 309 taxa, including those represented by Akkermansia, Faecalibacterium prausnitzii, Clostridium, Lactobacillus, Prevotella, and Streptococcus species. The only taxon that exhibited a significant increase in relative abundance in these subjects was represented by Moraxella nonliquefaciens. 

Children who experienced at least one URI (n = 17) within 60 days of collection of the baseline sample had significantly lower phylogenetic diversity compared to those who had no URIs within that time frame (n = 23). Time to development of URI, defined as the number of days between the collection of the baseline sample and the first incidence of URI (a value of 365 days was assigned to those children who did not experience a URI during the year of monitoring), was also significantly correlated with phylogenetic diversity .... Hence, these data indicate that diminished diversity of the NP microbiota is a precursor to URI in these children.  

In addition to Moraxella, a Corynebacterium was enriched in relative abundance in the NP microbiota of children who experienced acute sinusitis subsequent to baseline sample collection during the study period. ... However, Abreu et al. previously found Corynebacterium tuberculostearicum to be significantly enriched in the maxillary sinuses of adults with chronic rhinosinusitis compared to healthy control subjects [17]. The authors subsequently confirmed the ability of C. tuberculostearicum to induce acute sinusitis in the context of an antimicrobial-depleted murine model of sinus infection. Moreover co-installation of Lactobacillus sakei (one of a number of taxa acutely depleted in relative abundance among chronic rhinosinusitis patients) protected animals against C. tuberculostearicum infection [17]. Our pediatric data exhibits similarity with these murine studies, in that six members of the Lactobacillus genus were among those taxa most significantly depleted in relative abundance in the NP bacterial communities of children who developed sinusitis during our study. Five of these same taxa were also depleted in relative abundance in the NP microbial communities of children with a prior history of sinusitis. 

In addition to Lactobacillus, many other bacterial taxa including Akkermansia, Faecalibacterium prausnitzii, Clostridium, Prevotella, and Streptococcus species were depleted in relative abundance among children with a prior history of acute sinusitis. Though traditionally associated with gut microbiota, anaerobic bacterial species can exist in biofilms in the upper respiratory tract [18] and Akkermansia  and Faecalibacterium have previously been detected in the nasopharynx of children [1920]. While its role in the airway is unknown, gastrointestinal Akkermansia muciniphilia metabolizes mucin and has been shown to activate immune homeostasis, increasing host expression of antimicrobial peptides such as RegIIIγand improving barrier function via an increase in 2-oleoylgylcercerol [212223]. However, whether such mechanisms play a role at the airway mucosal surface remains to be determined. 

Mechanisms by which Lactobacillus and other bacterial species depleted in the NP microbiota of sinusitis patients may prevent the development of disease include competitive exclusion of pathogenic species. A previous murine study indicated that intra-nasal inoculation of mice with L. fermentum decreased S. pneumoniae burden throughout the respiratory tract and increased the number of activated macrophages in the lung and lymphocytes in the tracheal lamina propria [24]. Hence, it is plausible that the absence of NP genera with known competitive exclusion and immunomodulatory capabilities leads to pathogen expansion and associated clinical manifestations of upper airway infection. 

....We do show that a history of sinusitis, its pathophysiology or treatment, may shape the NP microbiota—which may inform future studies and their design. Additionally, though we recognize that the composition of the microbiota in the upper airways is likely highly influenced by antibiotic administration .... The pervasive effects of antimicrobials on the human microbiota are well-described [2627], and it is likely that lifetime antibiotic use plays an important role in shaping the baseline NP microbial community

The composition of the NP microbiota in healthy children between 49 and 84 months of age is associated with past and subsequent history of acute sinusitis and frequency of URI. Widespread bacterial taxon depletion and enrichment of M. liquefaciens and C. tuberculostearicum are associated with upper airway infection and the development of acute sinusitis. Collectively, these findings provide evidence of close connections between microbial colonization of the airways and susceptibility to upper respiratory illnesses in early childhood and raise the possibility that the manipulation of the airway microbiota could be applied to the prevention of childhood respiratory illnesses.