Skip to content

Two related articles, the first from a month ago, but both discuss eating fresh foods of summer and the effect on the microbiota. From Gut Microbiota Worldwatch:

Seasonal diet changes affect the composition of our gut microbiota

The mix of bacteria that live in our gut changes throughout the year, to match the food we eat in every specific season. For example, bacteria that process fresh fruit and vegetables are more abundant in the summer, and those that process fats are mode abundant in winter times. A group of scientists at the University of Chicago has found evidence of this seasonal shift in the gut flora, by studying the remote Hutterite population, in North America. The traditional diet and common meals of this community have allowed researchers to study the effect of one common diet in a large population over a long period of time.

Hutterites live in communal farms (colonies) and eat meals in common dining rooms, using traditional recipes that have been relatively stable over time and between colonies. They have little contact with the world outside their colonies, which translates into a very homogeneous genetic pool. Sixty Hutterites from six colonies answered questionnaires about what they ate over the course of a year. During the same period, scientists sampled their stool periodically, to find the genetic sequences of bacteria contained in their gut.

The Hutterites’ diet is relatively stable, except that in summer they eat more fresh fruit and vegetables, and in winter they eat less, and turn to frozen or canned food. Remarkably, their gut flora responded to these changes with massive modification in the abundance of certain bacteria. For example, during summer Bacteroidetes were more abundant: this group of bacteria contain complex carbohydrate digesters, which may be at work in processing fresh fruit and vegetables.

On the other hand Actinobacteria increased in winter: these microbes are associated with processing fat, and with a decreased content of fibre in food. Researchers also found seasonal shifts in other types of bacteria, whose associations with food are still unknown. Notably, the trends were almost identical in all six colonies, possibly a result of a very homogenous lifestyle carried on in a very similar environment.

Although Hutterites live in a relatively isolated way, they use technology and medicine, which makes their lifestyle closer to the general population than that of other more traditional communities. That is why the authors believe that these results may be extended to the general population.

This healthy living article promotes eating fresh fruits and vegetables (tomatoes, blueberries, asparagus, and leeks) as good for the gut microbiome. From Huffington Post:

4 Summer Foods That Can Help Trim Your Waist

Future microbiome research and therapy will have to take into account that diet affects the gut microbes of men and women differently. From Science Daily:

Diet affects males' and females' gut microbes differently

The microbes living in the guts of males and females react differently to diet, even when the diets are identical, according to a new study. These results suggest that therapies designed to improve human health and treat diseases through nutrition might need to be tailored for each sex.

The researchers studied the gut microbes in two species of fish and in mice, and also conducted an in-depth analysis of data that other researchers collected on humans. They found that in fish and humans diet affected the microbiota of males and females differently. In some cases, different species of microbes would dominate, while in others, the diversity of bacteria would be higher in one sex than the other.

These results suggest that any therapies designed to improve human health through diet should take into account whether the patient is male or female.

Genetics and diet can affect the variety and number of these microbes in the human gut, which can in turn have a profound influence on human health. Obesity, diabetes, and inflammatory bowel disease have all been linked to low diversity of bacteria in the human gut.

Why men and women would react differently to changes in diet is unclear, but there are a couple of possibilities. The hormones associated with each sex could potentially influence gut microbes, favoring one strain over another. Also, the sexes often differ in how their immune systems function, which could affect which microbes live and die in the microbiome.

One notable exception in Bolnick's results was in the mice. Although there was a tiny difference between male and female mice, for the most part the microbiota of each sex reacted to diet in the same manner. Because most dietary studies are conducted on mice, this result could have a huge effect on such research, and it raises questions about how well studies of gut microbes in lab mice can be generalized to other species, particularly humans.

Any bookworm would totally agree with the study results. From Medical Daily:

Happiness Comes From ‘Experiential Products,’ Like Books And Videos, Just As Much As From Real Life Experiences

Money can't buy happiness, right? Wrong. Books, videos, and other “experiential products” are likely to boost our happiness levels to the same level as life experiences, according to a new study.

San Francisco State University researchers discovered that material items created to enhance an experience can make people just as happy as real life experiences. There are two things happening here: real life experiences help people become closer to others, while experiential products like books can bring people new skills and knowledge, which can result in the same level of happiness, the researchers found. “If your goal is to make yourself happier but you’re a person who likes stuff, then you should buy things that are going to engage your senses. You’re going to be just as happy as if you buy a life experience, because in some sense this product is going to give you a life experience.”

Material things like clothes or jewelry often bring small boosts of happiness that don’t last long. But experiential items bring us knowledge and happiness that lasts longer, the authors say.

The study was needed, but my first thought was "Duh! Of course." From Science Daily:

Fist bumping beats germ-spreading handshake

“Fist bumpingtransmits significantly fewer bacteria than either handshaking or high-fiving, while still addressing the cultural expectation of hand-to-hand contact between patients and clinicians, according to a study published in the August issue of the American Journal of Infection Control...

In this study from the Institute of Biological, Environmental, and Rural Sciences at Aberystwyth University in the United Kingdom, researchers performed trials to determine if alternative greetings would transmit fewer germs than the traditional handshake. In this experiment, a greeter immersed a sterile-gloved hand into a container of germs. Once the glove was dry, the greeter exchanged a handshake, fist bump, or high-five with a sterile-gloved recipient. Exchanges randomly varied in duration and intensity of contact.

After the exchange, the receiving gloves were immersed in a solution to count the number of bacteria transferred during contact. Nearly twice as many bacteria were transferred during a handshake compared to the high-five, and significantly fewer bacteria were transferred during a fist bump than a high-five. In all three forms of greeting, a longer duration of contact and stronger grips were further associated with increased bacterial transmission.

“Adoption of the fist bump as a greeting could substantially reduce the transmission of infectious diseases between individuals,” said corresponding author, David Whitworth, PhD. This study expands on the recent call from the Journal of the American Medical Association (JAMA) to ban handshakes from the hospital environment. Healthcare providers’ hands can spread potentially harmful germs to patients, leading to healthcare-associated infections (HAIs). 

This research illustrates how little we currently know about gut bacteria.But it did show the importance of diet. From Science Daily:

Monitoring rise and fall of the microbiome

Trillions of bacteria live in each person's digestive tract. Scientists believe that some of these bacteria help digest food and stave off harmful infections, but their role in human health is not well understood.

To help shed light on the role of these bacteria, a team of researchers led by MIT associate professor Eric Alm recently tracked fluctuations in the bacterial populations of two research subjects over a full year. The findings, described in the July 25 issue of the journal Genome Biology, suggest that while these populations are fairly stable, they undergo daily fluctuations in response to changes in diet and other factors...."To a large extent, the main factor we found that explained a lot of that variance was the diet."

There are a few thousand strains of bacteria that can inhabit the human gut, but only a few hundred of those are found in any given individual, Alm says. For one year, the two subjects in the study collected daily stool samples so bacterial populations could be measured. They also used an iPhone app to track lifestyle factors such as diet, sleep, mood, and exercise, generating a huge amount of data.

Analysis of this data revealed that dietary changes could produce daily variations in the populations of different strains of bacteria. For example, an increase in fiber correlated with a boost in the populations of Bifidobacteria, Roseburia, and Eubacterium rectale. Four strains -- including Faecalibacterium prausnitzii, which has been implicated in protecting against inflammatory bowel disease -- were correlated with eating citrus.

During the study, each of the two subjects experienced an event that dramatically altered the gut microbiome. Subject B experienced food poisoning caused by Salmonella, and Subject A traveled to a developing nation, where he experienced diarrheal illness for two weeks.

During Subject B's infection, Salmonella leapt from 10 percent of the gut microbiome to nearly 30 percent. At the same time, populations of bacteria from the phylum Firmicutes, believed to be beneficial to human health, nearly disappeared. After the subject recovered, Firmicutes rebounded to about 40 percent of the total microbiome, but most of the strains were different from those originally present.

Subject A also exhibited severe disruptions to his microbiome during his trip, but once he returned to the United States, it returned to normal. Unlike Subject B's recovery from food poisoning, Subject A's populations returned to their original composition.

Great reason to add more rosemary and oregano to your diet. From Science Daily:

Rosemary, oregano contain diabetes-fighting compounds

The popular culinary herbs oregano and rosemary are packed with healthful compounds, and now lab tests show they could work in much the same way as prescription anti-diabetic medication, scientists report. In their new study, researchers found that how the herbs are grown makes a difference, and they also identified which compounds contribute the most to this promising trait.

Elvira Gonzalez de Mejia and colleagues point out that in 2012, type-2 diabetes affected more than 8 percent of Americans and cost the country $175 billion. ... Recent research has shown that herbs could provide a natural way to help lower glucose in blood. So Gonzalez de Mejia's team decided to take a closer look.They tested four different herbs, either greenhouse-grown or dried commercial versions, for their ability to interfere with a diabetes-related enzyme, which is also a target of a prescription drug for the disease.

They found that greenhouse herbs contained more polyphenols and flavonoids compared to the equivalent commercial herbs. But this didn't affect the concentration required to inhibit the enzyme. Commercial extracts of Greek oregano, Mexican oregano and rosemary were better inhibitors of the enzyme, required to reduce risk of type-2 diabetes, than greenhouse-grown herbs.

We know so little about the viruses in the human microbiome that a study just reported a newly discovered gut virus found in most of the world's population. From Medical Xpress:

Newly discovered gut virus lives in half the world's population

Odds are, there's a virus living inside your gut that has gone undetected by scientists for decades. A new study led by researchers at San Diego State University has found that more than half the world's population is host to a newly described virus, named crAssphage, which infects one of the most common types of gut bacteria, Bacteroidetes. This phylum of bacteria is thought to be connected with obesity, diabetes and other gut-related diseases.

The fact that it's so widespread indicates that it probably isn't a particularly young virus, either. "We've basically found it in every population we've looked at," Edwards said. "As far as we can tell, it's as old as humans are." He and his team named the virus crAssphage, after the cross-assembly software program used to discover it.

Some of the proteins in crAssphage's DNA are similar to those found in other well-described viruses. That allowed Edwards' team to determine that their novel virus is one known as a bacteriophage, which infects and replicates inside bacteria—and using innovative bioinformatic techniques, they predicted that this particular bacteriophage proliferates by infecting a common phylum of gut bacteria known as Bacteriodetes.

 Further details about crAssphage have been difficult to come by. It's unknown how the virus is transmitted, but the fact that it was not found in very young infants' fecal samples suggests that it is not passed along maternally, but acquired during childhood.

I've recently posted (July 10 and 11) on how our biome (the microbial community within us) may affect our moods and brain functioning. However, the following excerpts from the article on creativity reminds us that we cannot neglect looking at our genetic history and genes. I highlighted in bold-type some of the research results. This author is the neuroscientist Nancy Andreason, who has spent decades studying creativity and where creative genius comes from, whether it is dependent on high IQ, and why it is so often accompanied by mental illness. Do go and read the whole article. From The Atlantic:

Secrets of the Creative Brain

I have spent much of my career focusing on the neuroscience of mental illness, but in recent decades I’ve also focused on what we might call the science of genius, trying to discern what combination of elements tends to produce particularly creative brains. What, in short, is the essence of creativity? Over the course of my life, I’ve kept coming back to two more-specific questions: What differences in nature and nurture can explain why some people suffer from mental illness and some do not? And why are so many of the world’s most creative minds among the most afflicted? My latest study, for which I’ve been scanning the brains of some of today’s most illustrious scientists, mathematicians, artists, and writers, has come closer to answering this second question than any other research to date.

Although many people continue to equate intelligence with genius, a crucial conclusion from Terman’s study is that having a high IQ is not equivalent to being highly creative...Subsequent studies by other researchers have reinforced Terman’s conclusions, leading to what’s known as the threshold theory, which holds that above a certain level, intelligence doesn’t have much effect on creativity: most creative people are pretty smart, but they don’t have to be that smart, at least as measured by conventional intelligence tests. An IQ of 120, indicating that someone is very smart but not exceptionally so, is generally considered sufficient for creative genius.

But if high IQ does not indicate creative genius, then what does? And how can one identify creative people for a study?...In my own version of a eureka moment, the answer finally came to me: creative people are better at recognizing relationships, making associations and connections, and seeing things in an original way—seeing things that others cannot see. 

This time around, I wanted to examine a more diverse sample of creativity, from the sciences as well as the arts...My individual jewels so far include, among others, the filmmaker George Lucas, the mathematician and Fields Medalist William Thurston, the Pulitzer Prize–winning novelist Jane Smiley, and six Nobel laureates from the fields of chemistry, physics, and physiology or medicine. 

You cannot force creativity to happen—every creative person can attest to that. But the essence of creativity is making connections and solving puzzles. 

As I hypothesized, the creative people have shown stronger activations in their association cortices during all four tasks than the controls have. This pattern has held true for both the artists and the scientists, suggesting that similar brain processes may underlie a broad spectrum of creative expression....Many creative people are polymaths, people with broad interests in many fields—a common trait among my study subjects.

So far, this study—which has examined 13 creative geniuses and 13 controls—has borne out a link between mental illness and creativity similar to the one I found in my Writers’ Workshop study. The creative subjects and their relatives have a higher rate of mental illness than the controls and their relatives do (though not as high a rate as I found in the first study), with the frequency being fairly even across the artists and the scientists. The most-common diagnoses include bipolar disorder, depression, anxiety or panic disorder, and alcoholism.

As in the first study, I’ve also found that creativity tends to run in families, and to take diverse forms. In this arena, nurture clearly plays a strong role. Half the subjects come from very high-achieving backgrounds, with at least one parent who has a doctoral degree. The majority grew up in an environment where learning and education were highly valued.

So why do these highly gifted people experience mental illness at a higher-than-average rate? Given that (as a group) their family members have higher rates than those that occur in the general population or in the matched comparison group, we must suspect that nature plays a role—that Francis Galton and others were right about the role of hereditary factors in people’s predisposition to both creativity and mental illness. We can only speculate about what those factors might be, but there are some clues in how these people describe themselves and their lifestyles.

One possible contributory factor is a personality style shared by many of my creative subjects. These subjects are adventuresome and exploratory. They take risks. Particularly in science, the best work tends to occur in new frontiers. (As a popular saying among scientists goes: “When you work at the cutting edge, you are likely to bleed.”) They have to confront doubt and rejection. And yet they have to persist in spite of that, because they believe strongly in the value of what they do. This can lead to psychic pain, which may manifest itself as depression or anxiety, or lead people to attempt to reduce their discomfort by turning to pain relievers such as alcohol.

I’ve been struck by how many of these people refer to their most creative ideas as “obvious.” Since these ideas are almost always the opposite of obvious to other people, creative luminaries can face doubt and resistance when advocating for them. ... When you have talent and see things in a particular way, you are amazed that other people can’t see it.” Persisting in the face of doubt or rejection, for artists or for scientists, can be a lonely path—one that may also partially explain why some of these people experience mental illness.

One interesting paradox that has emerged during conversations with subjects about their creative processes is that, though many of them suffer from mood and anxiety disorders, they associate their gifts with strong feelings of joy and excitement. “Doing good science is simply the most pleasurable thing anyone can do,” one scientist told me. 

As for how these ideas emerge, almost all of my subjects confirmed that when eureka moments occur, they tend to be precipitated by long periods of preparation and incubation, and to strike when the mind is relaxed—during that state we called REST. “A lot of it happens when you are doing one thing and you’re not thinking about what your mind is doing,” one of the artists in my study told me. “I’m either watching television, I’m reading a book, and I make a connection … 

Many creative people are autodidacts. They like to teach themselves, rather than be spoon-fed information or knowledge in standard educational settings. 

Creative people tend to be very persistent, even when confronted with skepticism or rejection....Of course, having too many ideas can be dangerous. One subject, a scientist who happens to be both a kite and a string, described to me “a willingness to take an enormous risk with your whole heart and soul and mind on something where you know the impact—if it worked—would be utterly transformative.” The if here is significant. Part of what comes with seeing connections no one else sees is that not all of these connections actually exist. 

Even though it looks to be a modest effect, it is still good news. But they should have added kefir to the list of probiotic containing foods. From Science Daily:

Eating probiotics regularly may improve your blood pressure

Eating probiotics regularly may modestly improve your blood pressure, according to new research in the American Heart Association journal  Hypertension. Probiotics are live microorganisms (naturally occurring bacteria in the gut) thought to have beneficial effects; common sources are yogurt or dietary supplements.

"The small collection of studies we looked at suggest regular consumption of probiotics can be part of a healthy lifestyle to help reduce high blood pressure, as well as maintain healthy blood pressure levels," said Jing Sun, Ph.D., lead author and senior lecturer at the Griffith Health Institute and School of Medicine, Griffith University, Gold Coast, Queensland, Australia. "This includes probiotics in yogurt, fermented and sour milk and cheese, and probiotic supplements."

Analyzing results of nine high-quality studies examining blood pressure and probiotic consumption in 543 adults with normal and elevated blood pressure, researchers found:

  • Probiotic consumption lowered systolic blood pressure (the top number) by an average 3.56 millimeters of mercury (mm Hg) and diastolic blood pressure (the lower number) by an average 2.38 mm Hg, compared to adults who didn't consume probiotics.
  • The positive effects from probiotics on diastolic blood pressure were greatest in people whose blood pressure was equal to or greater than 130/85, which is considered elevated.
  • Probiotics with multiple bacteria lowered blood pressure more than those with a single bacteria.

We believe probiotics might help lower blood pressure by having other positive effects on health, including improving total cholesterol and low-density lipoprotein, or LDL, cholesterol; reducing blood glucose and insulin resistance; and by helping to regulate the hormone system that regulates blood pressure and fluid balance," Sun said.

After posting yesterday "Probiotic Misconceptions", I was pleasantly surprised that today's NY Times had an article (by Jane Brody) raising similar concerns. What was good is that she wrote about supplements not being regulated. She also left out that probiotic beneficial organisms are found in more than the gut. A case in point being the sinuses - because healthy sinuses also have Lactobacillus sakei (according to the Abreu et al study of 2012), and which has been the basis for my family's successful kimchi treatment for sinusitis (see Sinusitis treatment link for the method). From the NY Times:

Probiotic Logic vs. Gut Feelings

The label on my bottle of Nature’s Bounty Advanced Probiotic 10 says it contains 10 probiotic strains and 20 billion live cultures in each two-capsule dose. The supplement provides “advanced support for digestive and intestinal health” and “healthy immune function.” I have no way to know if any of this is true. Like all over-the-counter dietary supplements, probiotics undergo no premarket screening for safety, effectiveness or even truth in packaging. 

To be sure, lay and scientific literature are filled with probiotic promise, and I am hardly the only consumer who has opted to hedge her bets. The global market for probiotic supplements and foods is expected to reach $32.6 billion this year,with a projected annual growth of 20 percent or more.

 Beneficial micro-organisms have since been shown to inhabit three main locations in the digestive tract: the stomach, the lower part of the small intestine and the large intestine. To better understand the current enthusiasm for enhancing the body’s supply of these micro-organisms, some definitions are needed.

Prebiotics are nondigestible carbohydrates that stimulate the growth and activity of beneficial micro-organisms (that is, probiotics) in the gut. They are found naturally in oats, wheat, some fruits and vegetables (bananas, onions, garlic, leeks, asparagus, soybeans, honey and artichokes), and in breast milk, and they are added to some infant formulas.

Probiotics are defined by the World Health Organization as “live micro-organisms which when administered in adequate amounts confer a health benefit on the host.” The ailments that probiotics are said to benefit range from infection-caused diarrhea, inflammatory bowel diseases and irritable bowel syndrome to asthma, allergy and Type 1 diabetes.

Synbiotics are a combination of prebiotics and probiotics. They are found in so-called functional foods like yogurt and kefir, fermented foods like pickles and some cheeses, and in some supplements.

That probiotic organisms are important to health is not questioned. As researchers at the Institute for Immunology at the University of California,Irvine have written intestinal micro-organisms play “an important role in the development of the gut immune system, digestion of food, production of short-chain fatty acids and essential vitamins, and resistance to colonization from pathogenic microorganisms.”

Dr. Walker has explained that probiotics enhance defensive action by the cells that line the gut. When a person takes antibiotics, especially the broad-spectrum antibiotics most often prescribed, many of these beneficial microbes are destroyed along with the disease-causing bacteria. Patients on antibiotics are often told to consume yogurt with active cultures to replenish the beneficial organisms.

In an extensive review of the evidence published in 2010 in the journal Pediatrics, an expert committee concluded that probiotics might limit the course of virus-caused diarrhea in otherwise healthy infants and children. But the committee said there was not sufficient evidence to justify routine use of probiotics to prevent rotavirus-caused diarrhea in child care centers. Nor did the committee endorse taking probiotics during pregnancy and nursing or giving them to infants to prevent allergic disorders in those at risk.

Only a small percentage of probiotic foods and supplements have the backing of peer-reviewed published research. They include Dannon’s Activia yogurt and DanActive drink and the supplements Culturelle and Align. Although kefir contains even more probiotic strains than yogurt, clinical studies have not shown it to be effective in preventing or treating infectious diarrhea.

The challenge in taking probiotics is to get the microbes past the stomach, where most are killed by gastric acid, said Robert Dunn, a biologist at North Carolina State University. Once in the intestines, they must compete effectively with the microbes already present.

Dr. Dunn, author of "The Wild Life of Our Bodies," says there is good reason to remain skeptical of probiotics“There are hundreds of kinds of prebiotics and probiotics in stores,” he said. “As a consumer, it’s almost impossible to figure out what is best. What are the specific species in your intestines, and how will what you take compete with them?” Still, he added, taking them doesn’t seem harmful. 

There is growing evidence for the role of the appendix in restoring a healthful balance of microbes in the body. Though long considered an expendable, vestigial organ, the appendix is now being looked at as “a storehouse of good bacteria,” Dr. Dunn said. In a study of recovery rates from Clostridium difficile, which causes a severe form of infectious diarrhea, often following antibiotic therapy, patients whose appendixes had been removed were more likely to have a recurrent infection than those who still had appendixes.