Skip to content

A new report authored by dozens of scientists, health practitioners and children's health advocates is highlighting the (growing annually) evidence that many common and widely available chemicals endanger neurological development in fetuses and children of all ages. The chemicals contribute to such health problems as ADHD, autism spectrum disorders, lowered IQ, behavior disorders, and many other problems. Many of the chemicals have hormonal effects (endocrine disruptors) and interfere with normal hormonal activity. The chemicals of highest concern are all around us and are found in most pregnant women, their fetuses, and in growing children. In fact, in all of us.

Especially worrisome chemicals are:  leadmercury; organophosphate pesticides (used in agriculture and home gardens), phthalates (in medicines, plastics, and personal care products), flame retardants known as polybrominated diphenyl ethers (found in upholstered furniture, car seats), air pollutants produced by the combustion of wood and fossil fuels), and polychlorinated biphenyls (once used as coolants and lubricants in electrical equipment, but still pervasive). It is important to note that out of the thousands of chemicals that people are exposed to, that the great majority of chemicals are untested for neurodevelopmental effects.

Especially alarming is that the U.S. Centers for Disease Control found that 90% of pregnant women in the United States have detectable levels of 62 chemicals in their bodies, out of 163 chemicals for which the women were screened. This shows that we are exposed to mixtures of chemicals - not just to one chemical at a time.  Unfortunately the substitutes for problematic chemicals are NO better than the originals, because they tend to be similar chemically. For example, the substitutes for BPA are just as bad, if not worse, than BPA (bisphenol A). And remember, we are exposed to mixtures of chemicals - not just to one chemical at a time.

The report criticizes current regulatory lapses that allow chemicals to be introduced into people's lives with little or no review of their effects on fetal and child health. "For most chemicals, we have no idea what they're doing to children's neurodevelopment," Professor Schantz (one of the signers of the report) said. "They just haven't been studied." So why aren't policymakers doing something? Why is industry dictating what we're exposed to? Why are chemicals innocent until proven guilty, and even then they're allowed to be used? Who is looking out for the ordinary person, and especially developing children?

From the journal Environmental Health Perspectives: Project TENDR: Targeting Environmental Neuro-Developmental Risks. The TENDR Consensus Statement

Children in America today are at an unacceptably high risk of developing neurodevelopmental disorders that affect the brain and nervous system including autism, attention deficit hyperactivity disorder, intellectual disabilities, and other learning and behavioral disabilities. These are complex disorders with multiple causes—genetic, social, and environmental. The contribution of toxic chemicals to these disorders can be prevented. 

Leading scientific and medical experts, along with children’s health advocates, came together in 2015 under the auspices of Project TENDR: Targeting Environmental Neuro-Developmental Risks to issue a call to action to reduce widespread exposures to chemicals that interfere with fetal and children’s brain development. Based on the available scientific evidence, the TENDR authors have identified prime examples of toxic chemicals and pollutants that increase children’s risks for neurodevelopmental disorders. These include chemicals that are used extensively in consumer products and that have become widespread in the environment. Some are chemicals to which children and pregnant women are regularly exposed, and they are detected in the bodies of virtually all Americans in national surveys conducted by the U.S. Centers for Disease Control and Prevention. The vast majority of chemicals in industrial and consumer products undergo almost no testing for developmental neurotoxicity or other health effects.

Based on these findings, we assert that the current system in the United States for evaluating scientific evidence and making health-based decisions about environmental chemicals is fundamentally broken. To help reduce the unacceptably high prevalence of neurodevelopmental disorders in our children, we must eliminate or significantly reduce exposures to chemicals that contribute to these conditions. We must adopt a new framework for assessing chemicals that have the potential to disrupt brain development and prevent the use of those that may pose a risk. This consensus statement lays the foundation for developing recommendations to monitor, assess, and reduce exposures to neurotoxic chemicals. 

The TENDR Consensus Statement is a call to action to reduce exposures to toxic chemicals that can contribute to the prevalence of neurodevelopmental disabilities in America’s children. The TENDR authors agree that widespread exposures to toxic chemicals in our air, water, food, soil, and consumer products can increase the risks for cognitive, behavioral, or social impairment, as well as specific neurodevelopmental disorders such as autism and attention deficit hyperactivity disorder (ADHD) (Di Renzo et al. 2015; Gore et al. 2015; Lanphear 2015; Council on Environmental Health 2011). This preventable threat results from a failure of our industrial and consumer markets and regulatory systems to protect the developing brain from toxic chemicals. To lower children’s risks for developing neurodevelopmental disorders, policies and actions are urgently needed to eliminate or significantly reduce exposures to these chemicals.

We are witnessing an alarming increase in learning and behavioral problems in children. Parents report that 1 in 6 children in the United States, 17% more than a decade ago, have a developmental disability, including learning disabilities, ADHD, autism, and other developmental delays (Boyle et al. 2011). As of 2012, 1 in 10 (> 5.9 million) children in the United States are estimated to have ADHD (Bloom et al. 2013). As of 2014, 1 in 68 children in the United States has an autism spectrum disorder (based on 2010 reporting data) (CDC 2014).

Many toxic chemicals can interfere with healthy brain development, some at extremely low levels of exposure. Research in the neurosciences has identified “critical windows of vulnerability” during embryonic and fetal development, infancy, early childhood and adolescence (Lanphear 2015; Lyall et al. 2014; Rice and Barone 2000). During these windows of development, toxic chemical exposures may cause lasting harm to the brain that interferes with a child’s ability to reach his or her full potential.

The developing fetus is continuously exposed to a mixture of environmental chemicals (Mitro et al. 2015). A 2011 analysis of the U.S. Centers for Disease Control and Prevention’s (CDC) biomonitoring data found that 90% of pregnant women in the United States have detectable levels of 62 chemicals in their bodies, out of 163 chemicals for which the women were screened (Woodruff et al. 2011). Among the chemicals found in the vast majority of pregnant women are PBDEs, polycyclic aromatic hydrocarbons (PAHS), phthalates, perfluorinated compounds, polychlorinated biphenyls (PCBs), perchlorate, lead and mercury (Woodruff et al. 2011). Many of these chemicals can cross the placenta during pregnancy and are routinely detected in cord blood or other fetal tissues.

The following list provides prime examples of toxic chemicals that can contribute to learning, behavioral, or intellectual impairment, as well as specific neurodevelopmental disorders such as ADHD or autism spectrum disorder: Organophosphate (OP) pesticides, PBDE flame retardants, combustion-related air pollutants, which generally include PAHs, nitrogen dioxide and particulate matter, and other air pollutants for which nitrogen dioxide and particulate matter are markers, lead, mercuryPCBs .

The United States has restricted some of the production, use and environmental releases of these particular chemicals, but those measures have tended to be too little and too late. We face a crisis from both legacy and ongoing exposures to toxic chemicals.....The examples of developmental neurotoxic chemicals that we list here likely represent the tip of the iceberg....Only a minority of chemicals has been evaluated for neurotoxic effects in adults. Even fewer have been evaluated for potential effects on brain development in children (Grandjean and Landrigan 2006, 2014). Further, toxicological studies and regulatory evaluation seldom address combined effects of chemical mixtures, despite evidence that all people are exposed to dozens of chemicals at any given time.

Some chemicals, like those that disrupt the endocrine system, present a concern because they interfere with the activity of endogenous hormones that are essential for healthy brain development. Endocrine-disrupting chemicals (EDCs) include many pesticides, flame retardants, fuels, and plasticizers. One class of EDCs that is ubiquitous in consumer products are the phthalates. These are an emerging concern for interference with brain development and therefore demand attention.

Under our current system, when a toxic chemical or category of chemicals is finally removed from the market, chemical manufacturers often substitute similar chemicals that may pose similar concerns or be virtually untested for toxicity. This practice can result in “regrettable substitution” whereby the cycle of exposures and adverse effects starts all over again. The following list provides examples of this cycle: When the federal government banned some uses of OP pesticides, manufacturers responded by expanding the use of neonicotinoid and pyrethroid pesticides. Evidence is emerging that these widely used classes of pesticides pose a threat to the developing brain (Kara et al. 2015; Richardson et al. 2015; Shelton et al. 2014). 

When the U.S. Government reached a voluntary agreement with flame retardant manufacturers to stop making PBDEs, the manufacturers substituted other halogenated and organophosphate flame retardant chemicals. Many of these replacement flame retardants are similar in structure to other neurotoxic chemicals but have not undergone adequate assessment of their effects on developing brains. When the federal government banned some phthalates in children’s products, the chemical industry responded by replacing the banned chemicals with structurally similar new phthalates. These replacements are now under investigation for disrupting the endocrine system.

A new report released by the non-profit environmental research organization Environmental Working Group (EWG) has found that up to 420 chemicals known or likely to cause cancer have been measured in people (detected in urine, blood, hair, etc). Exposure to these carcinogens is not just from on-the-job contact with industrial chemicals, but from ordinary everyday exposure such as consumer products, food, water, air, and pesticides used in the home and lawns.

EWG compiled this inventory of known or likely carcinogens that have been measured in people by reviewing scientific literature and publicly available biomonitoring studies. Biomonitoring is the laboratory analysis of blood, urine, serum, saliva, and other body fluids to identify the amount and number of certain chemicals (such as pesticides, fire retardants, BPA, etc) present in the human body.  Thus it measures the extent to which chemical pollution is absorbed by our bodies. The CDC has a National Biomoniitoring Program. From Environmental Working Group (EWG):

Hundreds Of Cancer-Causing Chemicals Pollute Americans’ Bodies

Hundreds of cancer-causing chemicals are building up in the bodies of Americans, according to the first comprehensive inventory of the carcinogens that have been measured in people. EWG released the inventory today. EWG spent almost a year reviewing more than 1,000 biomonitoring studies and other research by leading government agencies and independent scientists in the U.S. and around the world. The nonprofit research group found that up to 420 chemicals known or likely to cause cancer have been detected in blood, urine, hair and other human samples.

Studies of the causes of cancer often focus on tobacco, alcohol and over-exposure to the sun. But the World Health Organization and many other scientists believe nearly 1 in 5 cancers are caused by chemicals and other environmental exposures––not only in the workplaces, but in consumer products, food, water and air.

EWG’s review bolsters the findings and ongoing research of the Halifax Project, a collaboration of more than 300 scientists from around the world who are investigating new ways in which combinations of toxic chemicals in our environment may cause cancer. While most cancer research focuses on treatment, the Halifax Project and EWG’s Rethinking Cancer initiative are looking at prevention by reducing people’s contact with cancer-causing chemicals.

“The presence of a toxic chemical in our bodies does not necessarily mean it will cause harm, but this report details the astounding number of carcinogens we are exposed to in almost every part of life that are building up in our systems,” said Curt DellaValle, author of the report and a senior scientist at EWG. “At any given time some people may harbor dozens or hundreds of cancer-causing chemicals. This troubling truth underscores the need for greater awareness of our everyday exposure to chemicals and how to avoid them.”

EWG estimated that a small subset of the chemicals inventoried in the report were measured at levels high enough to pose significant cancer risks in most Americans ––risks that generally exceed Environmental Protection Agency safety standards. But those estimates are only for individual chemicals and do not account for a question scientists and doctors are increasingly concerned about––how combined exposures to multiple chemicals may increase risk?

EWG’s inventory comes at an auspicious moment for the issue of cancer and chemicals. Last week Congress passed the first reform in 40 years of the nation’s woefully weak toxic chemical regulations, which President Obama is expected to sign soon....“Many of the carcinogens this study documents in people find their way into our bodies through food, air, water and consumer products every day. Dozens of them show up in human umbilical cord blood—which means Americans are exposed to carcinogens before they’ve left the womb,” said EWG President Ken Cook. “We should focus on preventing cancer by preventing human exposure to these chemicals.”

Try to avoid triclosan. Read labels (especially soaps, personal care, and household cleaning products) and avoid anything that says it contains triclosan, or is anti-bacterial, anti-fungal, anti-microbial, or anti-odor. We easily absorb triclosan into our bodies, and it has been detected in our urine, blood, and breast milk. Among its many negative effects (e.g., here and here) is that it is now linked to disruption of gut bacteria.

The gut microbiome performs vital functions in our bodies. Deviation from the normal microbiome (our microbial communities being out of whack) is known as dysbiosis. Dysbiosis has been associated with human diseases, including diabetes, heart disease, arthritis, and malnutrition. The researchers used zebrafish because they are commonly used to study impacts of various chemicals on gut microbial communities. So yes, the findings are valid and match what other studies have found. So please try to avoid triclosan. From Science Daily:

Common antimicrobial agent rapidly disrupts gut bacteria

A new study suggests that triclosan, an antimicrobial and antifungal agent found in many consumer products ranging from hand soaps to toys and even toothpaste, can rapidly disrupt bacterial communities found in the gut.The research was published in PLOS ONE by scientists from Oregon State University. It was based on findings made with zebrafish, which researchers believe are an important animal model to help determine possible human biological and health impacts of this antimicrobial compound.

Triclosan was first used as a hospital scrub in the 1970s and now is one of the most common antimicrobial agents in the world, found in shampoos, deodorants, toothpastes, mouth washes, kitchen utensils, cutting boards, toys, bedding, socks and trash bags. It continues to be used in medical settings, and can be easily absorbed through the skin.

"However, there's now a growing awareness of the importance of the bacteria in our gut microbiome for human health, and the overuse of antibiotics that can lead to the rise of 'superbugs.' There are consequences to constantly trying to kill the bacteria in the world around us, aspects we're just beginning to understand."

In the new study, researchers found that triclosan exposure caused rapid changes in both the diversity and composition of the microbiome in the laboratory animals. It's not clear what the implication may be for animal or human health, but scientists believe that compromising of the bacteria in the intestinal tract may contribute to the development or severity of disease. Some bacteria were more susceptible to the impact of triclosan than others, such as the family Enterobacteriaceae; and others were more resilient, such as the genus Pseudomonas.

The gut-associated microbiome performs vital functions for human health, prevents colonization with pathogens, stimulates the development of the immune system, and produces micronutrients needed by the host. Dysfunction of this microbiome has been associated with human disease, including diabetes, heart disease, arthritis and malnutrition, the scientists pointed out in their study.

Triclosan has been a concern in part because it is so widely used, and it's also readily absorbed through the skin and gastrointestinal tracts, showing up in urine, feces and breast milk. It also has been associated with endocrine disruption in fish and rats, may act as a liver tumor promoter, and can alter inflammatory responses.

A study by researchers showing troubling effects from certain pesticides (especially a class of fungicides) raises all sorts of questions: What is the long-term effect of chronic low doses of these fungicides in the foods we eat? How much of these chemicals are we getting exposed to? The Univ. of North Carolina researchers studied the effect of 294 chemicals (all common food-use pesticides or other environmental chemicals) on "mouse cortical neurons" (mouse brain cells). They found that one group of chemicals, which they referred to as "cluster 2", "mimics brain disorders" such as autism, advanced age, Alzheimer's, Parkinson's disease, and other neurodegenerative disorders. The chemicals (all pesticides, and mainly fungicides) causing these effects are: fenamidone, pyraclostrobin, famoxadone, trifloxystrobin, fenpyroximate, azoxystrobin, fluoxastrobin pyridaben and rotenone. Even though this study was done on mouse cortical neurons (in vitro), it is meaningful because of the similarities with human brain cells.

Very little is known about human exposure to these chemicals (how much is our exposure?) and their effects on humans, but the data suggest effects similar to that in neurological disorders. The researchers point out that many of the chemical residues in this cluster were found on conventionally raised foods, especially leafy green vegetables, and were detected at relatively high levels, especially pyraclostrobin. Most of these fungicides only came into use after 2000 and usage of these fungicides has been increasing in the U.S, with the exception of pyridaben (decreasing use) and rotenone (very low use). "These data suggest significant human exposure potential to many of the chemicals in cluster 2".

They point out that these fungicide residues have not been detected on organically produced foods (EPA and USDA data), which suggests a way to minimize exposure. None of these chemicals can be used by organic farmers in the U.S. Possible exposure is also from gardens and lawns (if used), contaminated water, and for farm workers in conventional agriculture. From Science Daily:

Could new class of fungicides play a role in autism, neurodegenerative diseases?

Scientists at the UNC School of Medicine have found a class of commonly used fungicides that produce gene expression changes similar to those in people with autism and neurodegenerative conditions, including Alzheimer's disease and Huntington's disease.

Mark Zylka, PhD, senior author of the study and associate professor of cell biology and physiology at UNC, and his team exposed mouse neurons to approximately 300 different chemicals.... "Based on RNA sequencing, we describe six groups of chemicals," Zylka said. "We found that chemicals within each group altered expression in a common manner. One of these groups of chemicals altered the levels of many of the same genes that are altered in the brains of people with autism or Alzheimer's disease." Chemicals in this group included the pesticides rotenone, pyridaben, and fenpyroximate, and a new class of fungicides that includes pyraclostrobin, trifloxystrobin, fenamidone, and famoxadone. Azoxystrobin, fluoxastrobin, and kresoxim-methyl are also in this fungicide class.

"We cannot say that these chemicals cause these conditions in people," Zylka cautioned. "Many additional studies will be needed to determine if any of these chemicals represent real risks to the human brain." Zylka, a member of the UNC Neuroscience Center, and his group found that these chemicals reduced the expression of genes involved in synaptic transmission -- the connections important for communication between neurons. If these genes are not expressed properly, then our brains cannot function normally. Also, these chemicals caused an elevated expression of genes associated with inflammation in the nervous system. This so-called neuroinflammation is commonly seen in autism and neurodegenerative conditions.

The researchers also found that these chemicals stimulated the production of free radicals -- particles that can damage the basic building blocks of cells and that have been implicated in a number of brain diseases. The chemicals also disrupted neuron microtubules. "Disrupting microtubules affects the function of synapses in mature neurons and can impair the movement of cells as the brain develops," Zylka said. "We know that deficits in neuron migration can lead to neurodevelopmental abnormalities. We have not yet evaluated whether these chemicals impair brain development in animal models or people."

Jeannie T. Lee, MD, PhD, professor of genetics at Harvard Medical School and Massachusetts General Hospital, who was not involved in this research, said, "This is a very important study that should serve as a wake-up call to regulatory agencies and the general medical community. The work is timely and has wide-ranging implications not only for diseases like autism, Parkinson's, and cancer, but also for the health of future generations. I suspect that a number of these chemicals will turn out to have effects on transgenerational inheritance."

Zylka's group also analyzed information from the U.S. Geological Survey, which monitors countywide pesticide usage, as well as the Food and Drug Administration and the U.S. Department of Agriculture, which test foodstuffs yearly for pesticide residues. Of the chemicals Zylka's team studied, only the usage of pyridaben has decreased since 2000. Rotenone use has remained the same since 2000. However, the use of all the fungicides in this group has increased dramatically over the past decade.

Indeed, a study from the Environmental Protection Agency found that pyraclostrobin is found on foods at levels that could potentially affect human biology, and another study linked pyraclostrobin usage to honeybee colony collapse disorder. The pesticide rotenone was previously implicated in Parkinson's disease through replicated animal experiments and through human epidemiological studies.....Previous work has also shown that a single dose of the fungicide trifloxystrobin reduced motor activity for several hours in female rats and for days in male rats. Disrupted motor function is a common symptom of Parkinson's disease and other neurological disorders. The related fungicide picoxystrobin impaired motor activity in rats at the lowest dose tested.

Zylka added, "The real tough question is: if you eat fruits, vegetables or cereals that contain these chemicals, do they get into your blood stream and at what concentration? That information doesn't exist." Also, given their presence on a variety of foodstuffs, might long term exposure to these chemicals -- even at low doses -- have a cumulative effect on the brain?

Zylka noted that conventionally grown leafy green vegetables such as lettuce, spinach, and kale have the highest levels of these fungicides. But due to each chemical's effectiveness at reducing fungal blights and rust, crop yields have increased and farmers are expanding their use of these chemicals to include many additional types of food crops.

Zylka's team hopes their research will encourage other scientists and regulatory agencies to take a closer look at these fungicides and follow up with epidemiological studies. "Virtually nothing is known about how these chemicals impact the developing or adult brain," Zylka said. "Yet these chemicals are being used at increasing levels on many of the foods we eat."

Applying fungicide to apple orchard. Credit: Univ. of Kentucky Agriculture Extension

A very popular herbicide – currently the most widely applied pesticide in the world – is glyphosate, commonly known as Roundup. Global use was 1.65 billion pounds in 2014 , while overall use in the US was 276.4 million pounds in 2014. Glyphosate is a human carcinogen and linked to various health effects, and even though it is so extensively used, the FDA just announced in February 2016 that they will “soon” start testing for its presence and actual levels in food for the first time in the agency’s history.

What, it never occurred to them that the most widely used pesticide in the world would be found in food?  Of course they knew glyphosate residues were occurring in food because in 2013 the EPA raised "tolerance limits" for human exposure to glyphosate for certain foods, stating with "reasonable certainty that no harm will result" from human exposure to the chemical. This increase in tolerance levels came about from a request from Monsanto (the manufacturer of the glyphosate herbicide Roundup), and even though numerous groups protested the increase, the EPA went along with Monsanto's request. Some tolerances doubled.

But remember.... there are very strong industry pressures on the EPA, and so the EPA seems to keep its head firmly in the sand for all sorts of pesticide issues. Maybe their motto is: see no evil...hear no evil....

The reason that glyphosate tolerance limits needed to be increased in the USA is because Roundup Ready crops are now so extensively planted, and this has resulted in skyrocketing use of glyphosate in the last 20 years. Roundup Ready crops are genetically modified to tolerate repeated glyphosate spraying (against weeds)  during the growing season. However, the crops take up and accumulate  glyphosate, and so glyphosate residues are increasing in crops. Another reason for increased residue of glyphosate in crops is the current practice of applying an herbicide such as Roundup right at the time of harvest to non-GMO crops such as wheat, so that the crop dies at once and dries out (pre-harvest crop dessication), and which is called a "preharvest application" by Monsanto. Glyphosate is now off-patent so many other companies are also using glyphosate in their products throughout the world.

Private testing has already found glyphosate residues in breast milk, soybeans, corn, honey, cereal, wheat flour, soy sauce, and infant formula. It is currently unknown what glyphosate residues in food, which we then ingest, mean for human health. Several studies have linked glyphosate to human health ailments, including non-Hodgkin lymphoma and kidney and liver problems. Of special concern is that because glyphosate is so pervasive in the environment, even trace amounts might be harmful due to chronic exposure. Some people (including researchers) are even suggesting that much of "gluten sensitivity" or "gluten intolerance" that people complain of, may actually be sensitivity to glyphosate residues in food.

So where have glyphosate residues been found recently? In Germany's 14 most popular beers. German beer purity in question after environment group finds weed-killer traces And in feminine hygiene products in France. How to lower your daily intake of glyphosate? Eat organic foods as much as possible, including wheat, corn, oats, soybeans.

Some influential scientists and physicians just came out with a Statement of Concern regarding their serious concerns with glyphosate. The article summary (Abstract) from Environmental Health: Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement

The broad-spectrum herbicide glyphosate (common trade name “Roundup”) was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds.

Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization’s International Agency for Research on Cancer recently concluded that glyphosate is “probably carcinogenic to humans.” In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards.

We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.

 Just a few years ago the type of pesticide (organophosphate, for example chlorpyrifos) looked at in this study was commonly used everywhere - in schools, homes, agriculture. It was easy to buy in stores (e.g., Raid spray), and was considered "safer" than older pesticides. Over time problem after problem has been found with them - with the latest being decreased lung function in children exposed to organophosphates early in life.

Keep in mind that with all current pesticides we know very little about long-term effects, especially on developing fetuses and children, and so we should be very, very careful about using them and avoid unnecessary use. Yes, that means using them for harmless lawn weeds is an unnecessary use. Common lawn weeds can not give a person cancer, birth defects, health problems, or illnesses, but pesticides can. From Medical Xpress:

Weaker breaths in kids linked to early pesticide exposure

Taking a deep breath might be a bit harder for children exposed early in life to a widely used class of pesticides in agriculture, according to a new paper by researchers at the University of California, Berkeley. A new study has linked the levels of organophosphate pesticide metabolites in the urine of 279 children living in California's Salinas Valley with decreased lung function. Each tenfold increase in concentrations of organophosphate metabolites was associated with a 159-milliliter decrease in lung function, or about 8 percent less air, on average, when blowing out a candle. The magnitude of this decrease is similar to a child's secondhand smoke exposure from his or her mother.

"Researchers have described breathing problems in agricultural workers who are exposed to these pesticides, but these new findings are about children who live in an agricultural area where the organophosphates are being used," said study senior author Brenda Eskenazi, a professor of epidemiology and of maternal and child health. "This is the first evidence suggesting that children exposed to organophosphates have poorer lung function."

The children were part of the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS), a longitudinal study in which the researchers follow children from the time they are in the womb up to adolescence. The researchers collected urine samples five times throughout the children's lives, from age 6 months to 5 years, and measured the levels of organophosphate pesticide metabolites each time. When the children were 7 years old, they were given a spirometry test to measure the amount of air they could exhale.

"The kids in our study with higher pesticide exposure had lower breathing capacity," said study lead author Rachel Raanan, who conducted the research while she was a postdoctoral scholar in Eskenazi's lab. "If the reduced lung function persists into adulthood, it could leave our participants at greater risk of developing respiratory problems like COPD (chronic obstructive pulmonary disease)."

The study did not examine the pathways for the children's exposure to pesticides, but the researchers did recommend that farmworkers remove their work clothes and shoes before entering their homes. They also suggested that when nearby fields are being sprayed with pesticides, children be kept away and, if indoors, windows should be closed. Pesticide exposure can also be reduced by washing fruits and vegetables thoroughly before eating.

The authors noted that although organophosphate pesticides are still widely used, most residential uses of organophosphate pesticides in the United States were phased out in the mid-2000s. In California, use of organophosphates in agriculture has also declined significantly from 6.4 million pounds in 2000, when the study began, to 3.5 million pounds in 2013, the year with the most recent pesticide use data. 

People spend a lot of effort trying to repel mosquitos  - because the bites are so annoying and because they spread serious diseases. New research looking at different mosquito repellents - both DEET and non-Deet ("natural") products - had interesting results. What was once thought effective in repelling mosquitoes doesn't work at all (vitamin B patch), and what was thought attractive to mosquitoes may actually repel them (floral scents), and the "natural" alternatives may or may not work. Also - the species of mosquito is important (they tested Aedes aegypti and Aedes albopictus), for they found that there was some variation among the 2 species in what they were attracted to or repelled by. Best choices for protection lasting at least 2 hours: DEET repellants, Cutter lemon eucalyptus insect repellent, and Victoria's Secret Bombshell. Best protection lasting 4 hours: DEET repellants, and Cutter lemon eucalyptus insect repellent. This last non-DEET product contained lemon-eucalyptus oil containing p-menthane-3,8-diol. Of course there was an untreated control (an attractive to mosquitoes volunteer's bare hand) in the study for comparison purposes.

However, while EcoSmart organic insect repellent  worked for 4 hours for Ae. albopictus mosquitoes, it only worked for the first few minutes for Ae. aegypti mosquitoes (so don't buy this product)For years people thought that Avon Skin So Soft worked well as a repellent - well, forget it- not good at all. Other products that did not work: a mosquito skin patch (vitamin B), and Cutter natural insect repellent. These results showed that DEET-free products containing citronella or geraniol did not work. See the original study for the result lists for 10 products for both species of mosquitoes. From Popular Science:

VICTORIA’S SECRET PERFUME WARDS OFF MOSQUITOES, STUDY FINDS

Because mosquitoes carry diseases like malaria and dengue fever, and irritate us, humans do a lot to avoid them. In most places people have to fend for themselves against the pests by sleeping under mosquito nets or using repellant. A number of new repellant formulas have hit the market in recent years, many with questionable efficacy. Researchers at New Mexico State University decided to compare the effectiveness of different repellants and perfumes, according to a study published recently in the Journal of Insect Science.

The Y-shaped tube used in the study.  Rodriguez et al, Journal of Insect Science, 2015

The researchers tested eight commercially available repellents, two fragrances, and a vitamin B patch that reportedly keeps the mosquitoes at bay, on two different species of disease-carrying mosquitoes. To test the efficacy of each, the researchers put a mosquito at the long end of a Y-shaped plastic tube. One of the researchers who is particularly attractive to mosquitoes placed her two hands at the ends of both forked tubes—one hand was untreated, the other treated with the chemical being tested. If the mosquito avoided the tube with the treated hand by staying still or moving towards the untreated hand, the researchers determined that the repellent worked.

The researchers found that, among repellents, those that contained the tried-and-true ingredient DEET were most effective in warding off the mosquitoes. A few others, such as Cutter Lemon Eucalyptus Insect Repellent, worked almost as well, while most of them (including the vitamin patch) didn’t make any difference.

While those findings weren’t unexpected, the researchers were surprised to find that Avon Skin So Soft Bath Oil repelled the mosquitoes for about two hours. Another fragrance, Victoria’s Secret Bombshell perfume, also repelled the mosquitoes and lasted even longer.

That overturned the previous understanding about how mosquitoes interpret scents. “There was some previous literature that said fruity, floral scents attracted mosquitoes, and to not wear those,” said Stacy Rodriguez, a research assistant involved in the study, said in a statement. “It was interesting to see that the mosquitoes weren’t actually attracted to the person that was wearing the Victoria’s Secret perfume – they were repelled by it.”

Why are huge (42+ pound) bags of lawn chemicals being sold with foods in stores? Should stacked bags of pesticides ever be placed next to foods in stores? Is this legal? Why is this happening in warehouse stores that call themselves environmentally conscious and brag about carrying organic foods?

Apparently the store does not recognize that the stacked bags of lawn chemicals (pesticides) are dangerous, that the bags can tear and spill pesticides, or that they always give off an awful chemical odor that can be smelled many aisles away. (This means we are breathing in those chemicals)

Why is it OK to place foods and enormous bags of pesticides in the same shopping cart, perhaps with children next to and handling the bags? (Note: I have personally seen this!) The pesticides should be sold in a separate area (like in Home Depot or Lowe's) or perhaps only in garden center. These pesticide products all say "Keep out of reach of children", to "avoid skin contact", and to "avoid inhaling". They are dangerous and do not belong in food stores.

The following photos were taken by me over the course of several years (2012 to 2015) in two Costco stores in NJ. The bags of "Turf Builder Winterguard Plus Weed Control" contain both fertilizer and pesticides and are commonly known as "Weed and Feed". Pesticides that kill weeds are also known as herbicides, and here the 2 pesticides (the active ingredients) are 2,4-D and mecoprop-p.

The first pesticide (2,4-D) was one of the the two pesticides found in Agent Orange used during the Vietnam War, and is linked to many serious health problems, including cancer in both people and dogs. (Note: scroll down for more information on these 2 pesticides).

Pesticides get into the body through the skin (dermal exposure) or eyes, through the mouth (ingesting it, including residues on foods), or through inhalation. Note that all odors represent an exposure to a chemical.

Pesticide products contain a number of ingredients – the “active ingredients” that targets the pest (weed or insect), and other ingredients that are just labeled "inert ingredients" or "other ingredients". Any one of them may produce a sickening odor. Odors also may be related to a breakdown product, a warning agent (a smelly substance added to make otherwise odorless products easier to detect), or a chemical added to the formula to hide a bad odor.

Currently, under the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA), pesticide manufacturers are only required to list the active ingredients in a pesticide, leaving consumers and applicators unaware of the possible toxics present in the inert or "other" ingredients of pesticide products. Pesticide manufacturers argue they cannot release information on inert ingredients because they are trade secrets, and if released, their products could be duplicated. Quite often inert ingredients constitute over 95% of the pesticide product, and can be as toxic as the active ingredients. 

So.... what this means is that just by being able to smell the pesticide-fertilizers, we are being exposed to some chemicals through inhalation. And when this product is placed by foods, one doesn't smell food but instead inhales chemicals, perhaps the pesticides. These huge bags easily leak and spill (unlike small metal containers or cans). Leaking bags also result in shopping carts being contaminated with pesticides, as well as the store floor.

By placing the bags of pesticides next to foods, Costco is also sending the message to customers that the product is "safe", but that is incorrect. Pesticides that are dangerous (toxic) must be registered with the EPA. Harmless things don't have to be registered - toxic chemicals do.

And yes, a few years ago I contacted Costco management about this issue, but their response was to pooh-pooh my concerns, and that I must "be sensitive". And they continued as before. The following are some photos from 2012 to 2015 at 2 Costco warehouse stores.

Next to refrigerated foods

Contains 2,4-D and Mecoprop-p

Next to bakery goods

By the meat

2,4-D (or 2,4-Dichlorophenoxyacetic acid is a systemic herbicide (broadleaf weed-killer). It is linked to several cancers, especially non-Hodgkin's lymphoma and soft tissue sarcoma, and can have other serious health effects including endocrine disruption (disruption of hormones), thyroid effects, neurotoxicity (nervous system damage), and developmental and reproductive effects.

As the post of Oct.19, 2015 indicated, a person's exposure to 2,4-D can be measured in a person's urine. There is much still unknown about what constant low-level exposure to 2,4-D does to a fetus, developing child, or adult of any age.

Of big concern is that the use of 2,4-D is increasing in the USA because of the development of new genetically modified soybean and corn strains that are resistant to 2,4-D. Thus farmers are using increasingly large amounts of 2,4-D on these corn and soybean crops in an attempt to control weeds. And yes, this means consumers are eating more foods with 2,4-D residues. (Note: long-term effects unknown.)

Mecoprop-p is a chlorophenoxy herbicide that is used to control a variety of weeds. It is not as toxic as 2,4-D, but it also has various health effects.

Go to the excellent Beyond Pesticides site  http://www.beyondpesticides.org/ for more information about all sorts of pesticides, resources, up-to-date information on pesticide laws, and more.

Several studies have found that when children eat organic foods, especially fruits and vegetables, the amount of pesticides in their bodies declines significantly. Most organophosphorus pesticides have been phased out for residential use, but they are still widely used in agriculture, and so these pesticides are detected in both foods and people.

This latest study looked at 20 children living in urban Oakland, Calif., and 20 in the agricultural community of Salinas, about 100 miles south. The children (between 3 - 6 years of age) ate a conventional diet for four days and an organic diet for seven days and then returned to conventional foods for five days. Their urine was collected daily and analyzed for pesticides, specifically by looking at pesticide metabolites (pesticide breakdown products).

Several classes of pesticides were frequently detected, for they were found in more than 72 percent of their urine samples, and 2,4-D was detected in 90% of samples. Of the six most frequently detected pesticides, two decreased by nearly 50 percent when children were on the organic diet, and levels of the common herbicide 2,4-D fell by 25 percent. Amounts of some pesticides were not significantly lower on the organic diet, but these were pesticides associated with use around homes for pest control, and not on foods (e.g., pyrethroids, diazinon, malathion).

Bottom line: eat as many organic foods as possible to lower pesticide levels in the  body. To further reduce pesticide levels in the body - avoid pesticide use around the home and garden. Instead, use least toxic IPM (Integrated Pest Management) or organic pest control and organic gardening.

From Medical Xpress: Organic produce means reduced pesticides in kids, study shows

New research out of the Center for Environmental Research and Children's Health at UC Berkeley shows that switching from conventional to organic fruits and vegetables, even for just a few days, significantly reduces pesticide levels in children's bodies.

Twenty children in Oakland, California and 20 in Salinas, California, all 3 to 6 years old, had their urine tested for 16 days during the study. For the first four, they ate conventional produce, for the next seven their diet was organic, and then conventional for the last five. The levels of several pesticides that showed up in daily testing dropped by one-quarter to one-half during the organic stretch.

Excerpts from the original study from Environmental Health Perspectives: Effect of Organic Diet Intervention on Pesticide Exposures in Young Children Living in Low-Income Urban and Agricultural Communities

Recent organic diet intervention studies suggest that diet is a significant source of pesticide exposure in young children....We aimed to determine whether consuming an organic diet reduced urinary pesticide metabolite concentrations in 40 Mexican-American children, 3–6 years of age, living in California urban and agricultural communities. In 2006, we collected urine samples over 16 consecutive days from children who consumed conventionally grown food for 4 days, organic food for 7 days, and then conventionally grown food for 5 days. We measured 23 metabolites, reflecting potential exposure to organophosphorous (OP), pyrethroid, and other pesticides used in homes and agriculture.

For six metabolites with detection frequencies > 50%, adjusted geometric mean concentrations during the organic phase were generally lower for all children, and were significant for total dialkylphosphates (DAPs) and dimethyl DAPs (DMs; metabolites of OP insecticides) and 2,4-D (2,4-dichlorophenoxyacetic acid, a herbicide), with reductions of 40%, 49%, and 25%, respectively (p < 0.01). Chemical-specific metabolite concentrations for several OP pesticides, pyrethroids, and herbicides were either infrequently detected and/or not significantly affected by diet.

Although most residential uses of many organophosphorus (OP) pesticides, including chlorpyrifos and diazinon, have been phased out since the mid-2000s due to potential health risks to children, they have continued to be used in agriculture [U.S. Environmental Protection Agency (EPA) 2000, 2001]. The use of OP pesticides in agriculture could result in ingestion of residues in food, and recent studies suggest that dietary intake of produce and juices may account for a significant proportion of OP pesticide exposure in young children (Lu et al. 2006b, 2008; Morgan et al. 2005; Smith-Spangler et al. 2012; Wilson et al. 2003). Some of the best evidence supporting these findings includes results from diet intervention studies where significant reductions in excreted urinary pesticide metabolites were observed in young children when they consumed an organic diet (Lu et al. 2006b, 2008)....The lower urinary pesticide metabolite concentrations found in children eating organic diets is consistent with food residue monitoring data that has shown lower pesticide residue levels in organic versus conventionally grown food [Baker et al. 2002; U.S. Department of Agriculture (USDA) 2008].

Other factors associated with children’s cumulative pesticide exposures include socioeconomic status and location of residence. For example, low-income children may experience higher exposures to pesticides, particularly pyrethroids, because of poor housing quality and associated pest infestations and home pesticide use (Bradman et al. 2005a; Quirós-Alcalá et al. 2011; Whyatt et al. 2002). Children living in agricultural areas, compared with children living in non-agricultural suburban areas, are exposed to higher ambient and residential contamination from drift or volatilization from nearby agricultural applications and take-home residue by farmworking parents (Bradman et al. 2011; Harnly et al. 2009;Lu et al. 2000; Quirós-Alcalá et al. 2011).

Our finding that an organic diet was not associated with a significant reduction in pyrethroid metabolite (3-PBA) excretion for all children is not surprising given that these pesticides are primarily used in and around homes and not commonly applied to food crops; the finding is also consistent with Lu et al. (2006a), who reported that residential use is a more significant pyrethroid exposure factor for children than a conventional diet. 

Several studies indicate that dietary intake is a potential route of exposure for herbicides.....Overall, these studies indicate that 2,4-D may be present in food and support our finding that the lower levels observed in our population during the organic diet phase were attributable to lower dietary exposure.

In summary, consistent with other studies, urinary 2,4-D and two measures of OP pesticide exposure (total DMs and total DAP metabolites) were lower in children eating an organic diet. Other frequently detected metabolites for pyrethroids, diethyl OP pesticides, and the herbicide metolachlor were not significantly lower during the organic diet phase. Further, several compound-specific herbicide and OP pesticide metabolites had low detection frequencies, indicating that diet was not an important exposure source for these pesticides (e.g., diazinon, malathion) in this population. Last, independent of diet, most frequently detected metabolites were generally higher in Salinas compared with Oakland children, with DMs and metolachlor at or near significance (p = 0.06 and 0.03, respectively), suggesting additional sources of pesticide exposure for children living in agricultural communities.

Research as long ago as 1991 found that households with dogs that developed malignant lymphoma applied 2,4-D herbicides (weedkillers) to their lawns more frequently than households where the dogs did not develop malignant lymphoma. In addition, the risk of canine malignant lymphoma rose much higher with four or more yearly applications of 2,4-D. This finding that exposure to certain lawn chemicals by dogs increases the risk of the dogs developing canine malignant lymphoma was confirmed in a 2012 study .

The following excerpts from an article geared toward students nicely explains a recent study that looked at the exposure that dogs have to lawn pesticides, specifically looking at 2,4-D, MCPP, and dicamba (commonly used weed-killers or herbicides). The study looked at exposure of pet dogs to 2.4-D by measuring it in the dog's urine, and also looked at how long the herbicides come off the grass where it had been applied. They found widespread detection of lawn chemicals in the urine of pet dogs, that lawn chemicals were commonly detected on both treated and "untreated" lawns (probably due to "drift"), that the lawn chemicals persisted on grass for at least 48 hours after application, and that the chemicals can persist longer on grass under certain environmental conditions (e.g., dry brown grass).

Finally, the researchers said that dogs may serve as sentinels for human exposures (think of them as canaries in the mine) - if they are exposed to this degree, then humans must also be highly exposed. Dogs get malignant lymphomas after a short latency period, while for humans it is years longer to develop cancer. NOTE: weed-killers are herbicides, a type of pesticide. My question is: why are people still applying pesticides to their lawns when there are links between pesticides and cancers? Is the weed-free lawn more important than health? From Science News for Students:

Weed killers may go from plant to pooch

Many people treat their lawns with weed killers — also known as herbicides — to rid themselves of unwanted plants, such as dandelions. Most people know to keep small children away from the grass after it’s been sprayed. That’s because these chemicals can be dangerous if children touched the treated lawn and then put their hands to their mouths. New data show that herbicides also can end up in dogs. The evidence: It comes out the other end in the animals’ urine.  ...continue reading "Dogs, Weed Killers, and Malignant Lymphoma"