Skip to content

It's official - the medical community has accepted that a key element in preventing allergies and asthma is early childhood exposure to allergens - whether peanuts, dust, or pets. Instead of avoiding the allergens (which was the medical advice for decades) - getting early exposure to them is key to preventing allergies. Apparently growing up on a farm is best (with exposure to farm dirt and dust), especially a dairy farm with animals and raw milk (a number of studies have found that unprocessed raw milk and its microbes also helps health). But if one doesn't live on a farm, then having furry pets in early childhood is also beneficial in reducing the incidence of allergies. The following study shows that microbes are involved - pet microbes were found in the guts of many of those children who did not develop early allergies! From Medscape:

Furry Pets 'Enrich' Gut Bacteria of Infants at Risk for Allergies

In a small, preliminary study, infants in households with furry pets were found to share some of the animals' gut bacteria - possibly explaining why early animal exposure may protect against some allergies, researchers say. The infants' mothers had a history of allergy, so the babies were at increased risk. It was once thought that pets might be a trigger for allergies in such children, the authors pointed out online September 3 in the Journal of Allergy and Clinical Immunology.

"Earlier it was thought that exposure to pets early in childhood was a risk factor for developing allergic disease," coauthor Dr. Merja Nermes, of the University of Turku in Finland, told Reuters Health by email. "Later epidemiologic studies have given contradictory results and even suggested that early exposure to pets may be protective against allergies, though the mechanisms of this protective effect have remained elusive."Adding pet microbes to the infant intestinal biome may strengthen the immune system, she said.  ...continue reading "Early Childhood Experiences Key to Preventing Allergies"

The study talked specifically about 3 types of bacteria that were different among the groups (severely obese, diabetics, healthy) studied: Firmicutes, Bifidobacteria, Clostridium leptum. From Science Daily:

Gut microbe levels are linked to type 2 diabetes and obesity

People with Type 2 diabetes or obesity have changes in the composition of their intestinal micro-organisms -- called the gut microbiota -- that healthy people do not have, researchers from Turkey have found.

The study lends support to other recent reports that have found an association between specific bacterial species in the human digestive system and obesity and diabetes, according to lead investigator Yalcin Basaran, MD, an endocrinologist from Gulhane Military Medical Academy School of Medicine, Ankara, Turkey.

The human digestive system contains an estimated 10 trillion to 100 trillion bacteria and other microscopic organisms, with each person housing at least 160 different species of organisms, according to Basaran. 

Basaran and his fellow researchers sought to identify the relationship between the gut microbe composition and obesity and Type 2 diabetes. Their study included 27 severely obese adults (20 men and seven women) whose body mass index, or BMI, exceeded 35 kg/m2, as well as 26 adults (18 men and eight women) with newly diagnosed Type 2 diabetes and 28 healthy control subjects (22 men and six women). 

Fecal analysis using a molecular biology technique showed that several of the most common types of bacteria in the gut were present at considerably lower levels in the obese and diabetic groups, compared with healthy controls. These reductions ranged from 4.2 to 12.5 percent in the obese patients and 10 to 11.5 percent in the diabetic patients, Basaran reported.

"Manipulation of intestinal bacteria could offer a new approach to manage obesity and Type 2 diabetes."

This exciting research opens a whole new way of thinking about the female breast and breast cancer. First of all, note that even our breasts have a microbiome (the microbial community). Key finding: the breast microbial population (specifically the bacteria) is different in healthy breasts (in the breast tissue) as compared to cancerous breasts. From Science Daily:

First look at breast microbiota raises tantalizing questions

The female breast contains a unique population of microbes relative to the rest of the body, according to the first-ever study of the breast microbiome. That study sought to lay the groundwork for understanding how this bacterial community contributes to health and disease, says first author Camilla Urbaniak, a PhD student at the University of Western Ontario. 

"Proteobacteria was the dominant phylum in healthy breast tissue," says Urbaniak, noting that it is found only in small proportions at other sites in the body. That may reflect the fact that breast tissue produces high concentrations of fatty acids, and these bacteria are fatty acid metabolizers. Proteobacteria is also the predominant phylum in human milk.

"The fact that beneficial bacteria, such as Lactobacillus and Bifidobacteria, were also detected makes us wonder whether their presence might be protective for both mother and child," says principal investigator Gregor Reid of the University of Western Ontario. Breast milk is one of the initial sources of gastrointestinal (GI) bacteria for newborns, and their GI microbiota are different if they are formula fed, says Urbaniak.

Conversely, Escherichia and Bacillus predominated in cancerous breasts.

"Strains of Escherichia have been shown to have mutagenic and carcinogenic activity in the gut and the bladder," says Urbaniak.

In the study, the investigators collected breast tissue from 81 women. Ten of these had undergone breast reduction, and their breast microbiota served as controls. The remaining women had had benign or cancerous tumors. The tissue collected from these women was taken from about five centimeters from the tumor, from what is known as "normal adjacent" tissue. Bacterial censuses were taken using a molecular technique known as 16S ribosomal sequencing, and with cultures.

Studies of the microbiome in other parts of the body, most notably the gastrointestinal tract, have shown that certain changes in bacterial populations can lead to a variety of ills, from obvious gastrointestinal conditions such as inflammatory bowel disease to those more unexpected, such as diabetes, obesity, cancer and even neurological conditions.

The complete reference: C. Urbaniak, J. Cummins, M. Brackstone, J. M. Macklaim, G. B. Gloor, C. K. Baban, L. Scott, D. M. O'Hanlon, J. P. Burton, K. P. Francis, M. Tangney, G. Reid.Bacterial microbiota of human breast tissueApplied and Environmental Microbiology, 2014; DOI: 10.1128/AEM.00242-14