Skip to content

The following is a really nice article about endocrine disruptors (chemicals that can interfere with the body's hormonal system). Journalist Hillary Brueck writes about where they are found (all around us!), some of the many negative health effects, and about NYU physician and researcher Dr. Leonardo Trasande and his new book: "Sicker, Fatter, Poorer: The Urgent Threat of Hormone-Disrupting Chemicals to Our Health and Future ... and What We Can Do About It." Also, some things we can do to lower our exposure to endocrine disruptors.

By the way, once again Europe is ahead of the US in dealing with this problem. Excerpts from Business Insider: A toxic-chemicals expert is sounding the alarm about 4 cancer-linked chemicals that could be making us sicker and fatter

Through the course of a single day, your hands, mouth, and body come in contact with countless pieces of paper, plastic, fabric, and furniture. You probably don't think about the chemicals these substances might harbor, or consider that they have a drug-like effect on health. But some do. They can make metabolisms slow down, subtly lower IQs, contribute to ADHD in children, and mess with sperm counts in men.

They're called "endocrine disruptors," and they're around us all the time. The chemicals change how our bodies work by shifting the way hormones operate, according to Leo Trasande, a pediatrician and public-health researcher at NYU Langone Health. "Hormones are the basic signaling molecules in our body that take on so many actions for practically every organ system," Trasande told Business Insider. "And endocrine disruptors are synthetic chemicals that scramble those signals, contributing to disease and disability."

In his new book, "Sicker, Fatter, Poorer: The Urgent Threat of Hormone-Disrupting Chemicals to Our Health and Future ... and What We Can Do About It," Trasande lays out the four big categories of endocrine disruptors he's most concerned about, based on evidence from scientific studies and observations in his patients. They are: Bisphenols, like BPA, which are often found in the linings of aluminum-canned food and drinks and on cash-register receipts. Brominated flame retardants that are in some carpets, furniture, and clothing. Synthetic pesticides on food. "Plasticizer chemicals" called phthalates that show up in plastic food packaging, lotions, and cosmetics.  ...continue reading "New Book Warning Us About Endocrine Disruptors"

Image result for fast food wikipedia Recent research examined levels of endocrine disruptors called phthalates in people eating fast food. Researchers found evidence of a dose–response relationship between fast food intake and exposure to phthalates - the more one eats fast food, the more phthalates (actually metabolites of the phthalates) can be measured in the person's urine. Fast food consumers had higher urinary levels of the phthalates DEHP, DiNP, and BPA than those not consuming fast food (even though the differences in levels of BPA among groups were "non-significant"). This is of concern because these endocrine disruptors are linked to a number of health problems. (Earlier discussion of this research.)

DEHP, DiNP, and BPA are detected in over 90% of the population in the US, but since there are many health concerns - it is better to have lower levels than higher levels. (Zero levels would be best). Note that phthalates and BPA are quickly metabolized and excreted in urine, with elimination half-lives of less than 24 hr - which is why the study looked at what had been eaten in the last 24 hours. But this also shows that one can quickly reduce their levels in the body.

Some possible sources of phthalate contamination in fast food are: PVC tubing, vinyl gloves used for food handling, and food packaging, including beverage cans - the chemicals leach or migrate out into the food and then are ingested. (More on chemicals migrating from containers to food), Fast food was defined as food obtained from restaurants without waiter service and from pizza restaurants, as well as all carry-out and delivery food. Another excellent reason to cut back on fast food (like we don't have enough reasons already!). The following news report discusses the research. From Environmental Health Perspectives:

Phthalates in Fast Food: A Potential Dietary Source of Exposure

Many research studies have surveyed nutritional habits, but fewer have studied how food processing and packaging might introduce unwanted chemicals into foods. In this issue of EHP, researchers report that fast food consumption appears to be one source of exposure to the chemicals di(2-ethylhexyl) phthalate (DEHP) and diisononyl phthalate (DiNP).1

The authors used data from the National Health and Nutrition Examination Survey (NHANES) to estimate the percentage of individuals’ calories that came from fast food, fat intake attributable to fast food consumption, and fast food intake by food group. During NHANES interviews, respondents had reported their diet from the preceding 24 hours. Fast food was defined as food obtained from restaurants without waiter service and from pizza restaurants, as well as all carryout and delivery food.2 ....The final study population included nearly 9,000 people aged 6 years or older. Approximately one-third of people surveyed had eaten fast food in the preceding 24 hours. Study participants who ate fast food were more likely to be male, under age 40, and non-Hispanic black, and to have higher total calorie and total fat intake from fast food, compared with the general population.1

Fast food consumers had higher urinary levels of DEHP, DiNP, and BPA than non-consumers, although the differences in average urinary levels were small and for BPA were non-significant. When fast food intake was categorized by food group, DEHP metabolites were associated with intake of grains and “other” (a category that included vegetables, condiments, potato items, beverages, and more). DiNP metabolites were associated with intake of meat and grains.1

The authors also found that the associations between phthalates and fast food were not uniform across the population.1They speculate that the pronounced association they saw between fast food consumption and DEHP in black consumers could reflect higher overall consumption of fast food and/or different food choices among this population. Prior research suggests that predominately black neighborhoods in urban areas have a greater density of fast food restaurants than white neighborhoods.3

The authors point to PVC tubing, vinyl gloves used for food handling, and food packaging as possible sources of phthalate contamination in fast food. DEHP is a ubiquitous high-molecular-weight phthalate that has been removed from some products due to concerns about potential adverse health effects.5 In some cases it is being replaced with DiNP.2

The related Environmental Health Perspectives research article:  Recent Fast Food Consumption and Bisphenol A and Phthalates Exposures among the U.S. Population in NHANES, 2003–2010

Experimental animal studies demonstrate that DEHP and DiNP have endocrine-disrupting properties because of their anti-androgenic effects on the male reproductive system (National Research Council 2008). Human exposure to DEHP has been associated with adverse reproductive, neurobehavioral, and respiratory outcomes in children (Braun et al. 2013; Ejaredar et al. 2015) and metabolic disease risk factors such as insulin resistance in adolescents and adults (James-Todd et al. 2012; Attina and Trasande 2015). Though epidemiologic evidence of DiNP is less complete, recent studies report associations between exposure and similar health outcomes including adverse respiratory and metabolic outcomes in children (Bertelsen et al. 2013; Attina and Trasande 2015). BPA is also a suspected endocrine disrupter, and experimental and human evidence suggest that BPA is a reproductive toxicant (Peretz et al. 2014). In addition, prenatal BPA exposure has also been associated with adverse neurobehavioral outcomes in children (Mustieles et al. 2015).

Given the concern over chemical toxicity, it is important to identify modifiable sources of exposure that may be targeted for exposure reduction strategies. Simulated exposure modeling, observational epidemiologic studies, and intervention studies all suggest that diet is an important exposure pathway for both high-molecular-weight phthalates and BPA.....Phthalates have been shown to leach into food from PVC in materials like tubing used in the milking process, lid gaskets, food preparation gloves, conveyor belts and food packaging materials (Cao 2010;Serrano et al. 2014). In fact, an intervention study reported that urinary BPA and DEHP were reduced by 66% and 53–56%, respectively, when participants’ diets were restricted to food with limited packaging (Rudel et al. 2011). Foods high in fat, such as dairy and meat, may be more contaminated by high-molecular-weight phthalates that are more lipophilic such as DEHP (Serrano et al. 2014). Fast food may be an important source of exposure to phthalates and BPA because it is highly processed, packaged, and handled.

Two recent articles about BPA (bisphenol A), BPS (bisphenol B), and the "BPA-free" label  - one a study, and one a review article. The "BPA-free" label unfortunately means the product contains a product similar to BPA (typically BPS) and with the same problems as BPA. Both articles discuss the accumulating health reasons to try to avoid these endocrine disruptors. Which is really , really tough to do given that plastics are all around us and used by us every day.

From Science Daily: Prenatal BPA exposure linked to anxiety and depression in boys

Boys exposed prenatally to a common chemical used in plastics may be morelikely to develop symptoms of anxiety and depression at age 10-12. The new study by researchers at the Columbia Center for Children's Environmental Health (CCCEH) within the Mailman School of Public Health examined early life exposure to the chemical Bisphenol A (BPA). Results are published in the journal Environmental Research.

BPA is a component of some plastics and is found in food containers, plastic water bottles, dental sealants, and thermal receipt paper. In the body, BPA is a synthetic estrogen, one of the class of chemicals known as "endocrine disruptors." The Columbia researchers, led by Frederica Perera, PhD, DrPH, director of CCCEH, previously reported that prenatal exposure to BPA was associated with emotionally reactive and aggressive behavior, and more symptoms of anxiety and depression in boys at age 7-9.

Perera and her co-investigators followed 241 nonsmoking pregnant women and their children, a subset of CCCEH's longstanding urban birth cohort study in New York City, from pregnancy through childhood....Researchers controlled for factors that have been previously associated with BPA exposure levels, including socioeconomic factors. After separating the data by sex, they found that boys with the highest levels of prenatal exposure to BPA had more symptoms of depression and anxiety than boys with lower levels of prenatal exposure to BPA; no such associations were found in girls.

From Endocrine News: Warning Signs: How Safe Is “BPA Free?”

While stickers are showing up declaring certain products “BPA Free,” that doesn’t mean they’re necessarily safe. Could bisphenol S be even worse than the compound it is supposed to be replacing? 

Human exposure to BPA is as ubiquitous as the stickers showing up now that proclaim products BPA free. The chemical used to make plastic has been linked to all kinds of reproductive issues, and even thought to play a role in the development of obesity and cardiovascular events, so industry is taking some steps to correct the problem (after much wailing and gnashing of teeth on their part). These stickers read “BPA FREE” and “NON-TOXIC PLASTIC” in bold letters and usually feature leaves and a green motif, the implication being that these products are safe and healthy. 

But “BPA free” does not mean “EDC free” [endocrine disruptor free] and many products now contain bisphenol S as a substitute for BPA. BPS is a similar chemical and has been found in everything from canned soft drinks to receipt paper to baby bottles. (The FDA banned BPA in baby bottles.) It’s been found in indoor dust samples and is beginning to show up in human urine, and it has been reported to be less biodegradable than BPA. Animal studies have implicated BPS in impaired offspring development. And the production of BPS is increasing annually.

“Recent studies testing BPS and comparing it to BPA show that BPS is as bad, if not worse, than BPA as an EDC,” says Andrea Gore, PhD, professor and Vacek Chair of Pharmacology at the University of Texas in Austin, and editor-in-chief of Endocrinology. “’BPA free’ can give consumers a false sense of security about the product.”

According to Kimberly H. Cox, a postdoctoral fellow studying reproductive endocrinology at Massachusetts General Hospital in Boston, the effects of BPA and BPS are subtler than say, PCBs or pesticides, where exposures came at high levels, with devastating effects. The effects of BPA and BPS depend on the timing, length, and dose of exposure, and numerous studies have shown that there are effects on the reproductive system, for example, at doses of BPA much lower than what has been determined as a “safe” exposure by the EPA. And now there also seem to be effects of BPS on the development of the reproductive system, as well as the brain regions that control reproduction.

“When endocrinologists talk about BPA, they frequently describe it as estrogenic – and do not point out the other endocrine systems that are being altered, such as thyroid hormone,” Wayne says. “Our paper emphasizes that BPA and BPS are activating both estrogenic and thyroid hormone pathways. This suggests that EDCs are having much broader effects on health and disease than just mimicking estrogens (which is bad enough).”

BPA is in many consumer products, but research is finding more and more problems with it. The findings of these two studies may motivate people to try to lower their exposure to plastics and BPA. From Newsweek:

BPA Levels Higher in Men With Prostate Cancer: Study

Bisphenol-A is everywhere. If you are reading this in the United States, there is a greater-than-90 percent chance you have BPA in your system, according to the Centers for Disease Control. The chemical is nearly ubiquitous: it is all over your receipts and soup cans, and it gives plastic bottles useful properties like flexibility and durability. It also mimics human estrogen in the body, and studies have linked it to breast cancer, diabetes, obesity, and hormone abnormalities in children, though what doses are dangerous is a matter of debate.

Now, for the first time, scientists are adding prostate cancer to the list of possible health problems from exposure.

Prostate cancer is the second most prevalent form of cancer among men, afflicting one in six, mostly later in life. A new study published Monday in the journal Plos One found that men with prostate cancer have BPA in their urine at levels 2- to 4-fold higher than cancer-free men. Aging is the best-known risk for prostate cancer, which makes the study’s findings particularly salient: BPA concentrations were especially high in prostate cancer patients under the age of 40, when aging is less of a contributing factor to the development of prostate cancer.

From Science Daily:

BPA linked to breast cancer tumor growth

UT Arlington biochemists say their newly published study brings researchers a step closer to understanding how the commonly used synthetic compound bisphenol-A, or BPA, may promote breast cancer growth.

Subhrangsu Mandal, associate professor of chemistry/biochemistry, and Arunoday Bhan, a PhD student in Mandal's lab, looked at a molecule called RNA HOTAIR. HOTAIR is an abbreviation for long, non-coding RNA, a part of DNA in humans and other vertebrates. HOTAIR does not produce a protein on its own but, when it is being expressed or functioning, it can suppress genes that would normally slow tumor growth or cause cancer cell death.

High levels of HOTAIR expression have been linked to breast tumors, pancreatic and colorectal cancers, sarcoma and others.

UT Arlington researchers found that when breast cancer and mammary gland cells were exposed to BPA in lab tests, the BPA worked together with naturally present molecules, including estrogen, to create abnormal amounts of HOTAIR expression. 

"We were surprised to find that BPA not only increased HOTAIR in tumor cells but also in normal breast tissue," said Bhan. He said further research is needed, but the results beg the question -- are BPA and HOTAIR involved in tumor genesis in addition to tumor growth?

BPA has been widely used in plastics, such as food storage containers, the lining of canned goods and, until recently, baby bottles. It belongs to a class of endocrine disrupting chemicals, or EDCs, which have been shown to mimic natural hormones. These endocrine disruptors interfere with hormone regulation and proper function of human cells, glands and tissue.