Skip to content

Finally, a paper on some (but only some) of the chemicals linked to breast cancer and how to measure them in a woman's body. From Medical Xpress:

Study lists dangerous chemicals linked to breast cancer

Certain chemicals that are common in everyday life have been shown to cause breast cancer in lab rats and are likely to do the same in women, US researchers said MondayThe paper in the peer-reviewed journal Environmental Health Perspectives lists 17 chemicals to avoid and offers women advice on how to minimize their exposure. They include chemicals in gasoline, diesel and other vehicle exhaust, flame retardants, stain-resistant textiles, paint removers, and disinfection byproducts in drinking water.

Some of the biggest sources of mammary carcinogens in the environment are benzene and butadiene, which can come from vehicle exhaust, lawn equipment, tobacco smoke and charred food.

Other concerns are cleaning solvents like methylene chloride, pharmaceuticals used in hormone replacement therapy, some flame retardants, chemicals in stain-resistant textiles and nonstick coatings, and styrene which comes from tobacco smoke and is also used to make Styrofoam, the study said. Carcinogens can also be found in drinking water, researchers said.

"Unfortunately, the link between toxic chemicals and breast cancer has largely been ignored. Reducing chemical exposures could save many, many women's lives." Brody described the paper as the first to comprehensively list potential breast carcinogens and detail ways for experts to measure them in women's blood and urine.

The study also recommends seven ways for women to avoid these chemicals:

1) Limit exposure to exhaust from vehicles or generators, don't idle your car, and use electric lawn mowers, leaf blowers and weed whackers instead of gas-powered ones. 2) Use a ventilation fan while cooking and limit how much burned or charred food you eat. 3) Do not buy furniture with polyurethane foam, or ask for furniture that has not been treated with flame retardants4) Avoid stain-resistant rugs, furniture and fabrics5) If you use a dry-cleaner, find one who does not use PERC (perchloroethylene) or other solvents. Ask for "wet cleaning.6) Use a solid carbon block drinking water filter. 7) Keep chemicals out of the house by taking off your shoes at the door, using a vacuum with a HEPA (high-efficiency particulate air) filter, and cleaning with wet rags and mops.

Researchers found that many common chemicals, including Triclosan, interfere with normal sperm function. Perhaps this is contributing to fertility problems.From Science Daily:

Endocrine disruptors impair human sperm function, research finds

A plethora of endocrine-disrupting chemicals interfere with human sperm function in a way that may have a negative impact on fertilization. These are the findings of a German -- Danish team of researchers from the Center of Advanced European Studies and Research in Bonn, Germany, and the University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark. The work, which is published in EMBO reports,suggests that endocrine disruptors may contribute to widespread fertility problems in the Western world in a way that hitherto has not been recognized.

Endocrine disruptors are present in food, textiles, drugs, household, and personal-care products such as plastic bottles, toys, and cosmetics. Proving the deleterious effects of endocrine disruptors on human beings has been difficult due to a lack of suitable experimental systems.

"For the first time, we have shown a direct link between exposure to endocrine disrupting chemicals from industrial products and adverse effects on human sperm function,'' said Niels E. Skakkebaek, professor and leader of the Danish team.

Hundreds to thousands of chemicals can be rapidly tested for their potential to interfere with human sperm function using the bioassay developed by the researchers. In this initial study, about one hundred chemicals were tested. Around one third, including ultraviolet (UV) filters like 4-methylbenzylidene camphor (4-MBC) used in some sunscreens, the anti-bacterial agent Triclosan used in toothpaste, and di-n-butylphthalate (DnBP), showed adverse actions.

Altogether, the study indicates that endocrine disruptors might disturb the precisely coordinated sequence of events underlying fertilization in several ways: the chemicals might evoke changes in swimming behaviour at the wrong time and wrong place, hinder navigation of sperm towards the egg, and hamper penetration into the protective egg coat.

Different article about the same research, and here they also discuss the very important finding that mixtures of common chemicals have an even stronger adverse "cocktail effect" on sperm. From The Independent:

Chemicals in soap can cause male infertility, claim scientists

They also found that the concentrations needed to trigger these adverse reactions were similar to the very low levels commonly found within the human body. In addition, they showed for the first time that there was a “cocktail effect”, when a number of chemicals worked together to amplify their individual effects.

Now we need ways to nurture our skin bacteria. From Science Daily:

Bacteria on the skin: Our invisible companions influence how quickly wounds heal

A new study suggests microbes living on our skin influence how quickly wounds heal. The findings could lead to new treatments for chronic wounds, which affect 1 in 20 elderly people.

We spend our lives covered head-to-toe in a thin veneer of bacteria. But despite a growing appreciation for the valuable roles our resident microbes play in the digestive tract, little is known about the bacteria that reside in and on our skin. A new study suggests the interplay between our cells and these skin-dwelling microbes could influence how wounds heal.

Chronic wounds -- cuts or lesions that just never seem to heal -- are a significant health problem, particularly among elderly people. An estimated 1 in 20 elderly people live with a chronic wound, which often results from diabetes, poor blood circulation or being confined to bed or a wheelchair."These wounds can literally persist for years, and we simply have no good treatments to help a chronic wound heal," said Hardman, who added that doctors currently have no reliable way to tell whether a wound will heal or persist. 

In their recent study, Hardman and his colleagues compared the skin bacteria from people with chronic wounds that did or did not heal. The results showed markedly different bacterial communities, suggesting there may be a bacterial "signature" of a wound that refuses to heal"Our data clearly support the idea that one could swab a wound, profile the bacteria that are there and then be able to tell whether the wound is likely to heal quickly or persist, which could impact treatment decisions," said Hardman.

The team also conducted a series of studies in mice to shed light on the reasons why some wounds heal while others do not. They found that mice lacking a single gene had a different array of skin microbiota -- including more harmful bacteria -- and healed much more slowly than mice with a normal copy of the gene. The gene, which has been linked to Crohn's disease, is known to help cells recognize and respond to bacteria. Hardman said the findings suggest that genetic factors influence the makeup of bacteria on a person's skin, which in turn influences how they heal.

Another reason to breastfeed infants. From Medical Xpress:

Breastfeeding promotes the growth of beneficial bacteria in the gut

A number of studies have shown that breastfed babies grow slightly slower and are slightly slimmer than children who are fed with infant formula. Children who are breastfed also have a slightly lower incidence of obesity, allergies, diabetes and inflammatory bowel disease later in life. According to a new study by the National Food Institute and the University of Copenhagen this may be due to the fact that breastfeeding promotes the development of beneficial bacteria in the baby's gut.

"We have become increasingly aware of how crucially important a healthy gut microbial population is for a well-functioning immune system. Babies are born without bacteria in the gut, and so it is interesting to identify the influence dietary factors have on gut microbiota development in children's first three years of life," research manager at the National Food Institute Tine Rask Licht says.

The study shows that there are significant changes in the intestinal bacterial composition from nine to 18 months following cessation of breastfeeding and other types of food being introduced. However, a child's gut microbiota continues to evolve right up to the age of three, as it becomes increasingly complex and also more stable.

"The results help to support the assumption that the gut microbiota is not - as previously thought - stable from the moment a child is a year old. According to our study important changes continue to occur right up to the age of three.

More information: The study has been described in a scientific article in Applied and Environmental Microbiology: Establishment of intestinal microbiota during early life: A longitudinal, explorative study of a large cohort of Danish infants:www.ncbi.nlm.nih.gov/pubmed/24584251

Some information about toothbrushes and bacteria. From Science Daily:

Clean before you clean: What's on your toothbrush just might surprise you

Do you know Staphylococci, coliforms, pseudomonads, yeasts, intestinal bacteria and -- yes -- even fecal germs may be on your toothbrush?

Appropriate toothbrush storage and care are important to achieving personal oral hygiene and optimally effective plaque removal, says Maria L. Geisinger, DDS, assistant professor of periodontology in the School of Dentistry at the University of Alabama at Birmingham.

"The oral cavity is home to hundreds of different types of microorganisms, which can be transferred to a toothbrush during use," Geisinger said. "Furthermore, most toothbrushes are stored in bathrooms, which exposes them to gastrointestinal microorganisms that may be transferred via a fecal-oral route. The number of microorganisms can vary wildly from undetectable to 1 million colony-forming units (CFUs). Proper handling and care of your toothbrush is important to your overall health."

What constitutes proper care and handling? Geisinger answers several questions that may help better protect families from toothbrush germs.

Q. Can bacteria from your toilet really reach your toothbrush?

A. "The short answer is 'yes.' Enteric bacteria, which mostly occur in the intestines, can transfer to toothbrushes and thus into your mouth. This may occur through inadequate hand-washing or due to microscopic droplets released from the toilet during flushing. The topic of dirty toothbrushes was a recent subject of the popular Discovery Channel show "Mythbusters," when 24 toothbrushes were tested, and all of them demonstrated enteric microorganisms -- even those that had not been inside of a bathroom. In fact, toothbrushes may be contaminated with bacteria right out of the box, as they are not required to be packaged in a sterile manner."

Q. What is the proper way to clean your toothbrush to help remove germs?

A. "You should thoroughly rinse toothbrushes with potable tap water after brushing to remove any remaining toothpaste and debris. Additionally, soaking toothbrushes in an antibacterial mouth rinse has been shown to decrease the level of bacteria that grow on toothbrushes."

Q. How should you to store your toothbrush to avoid germ and bacteria buildup?

A. "The American Dental Association recommends that you not store your toothbrush in a closed container or routinely cover your toothbrush, as a damp environment is more conducive to the growth of microorganisms. Also, storing toothbrushes in an upright position and allowing them to air dry until the next use is recommended, if possible. If more than one brush is stored in an area, keeping the toothbrushes separate can aid in preventing cross-contamination."

Interesting article about potential low-cost effective cancer treatments that Big Pharma is not researching because there is no profit in it for them. From Pacific Standard:

The War on Cancer: Big Pharma Is Keeping Us From Developing Low-Cost Treatments

Big Pharma’s focus on blockbuster cancer drugs squeezes out research into potential treatments that are more affordable. Says one researcher: “What is scientific and sexy is driven by what can be monetized.”

Numerous laboratory, animal, and small human studies suggest that low-dose, continuous chemotherapy holds promise in shrinking tumors and preventing cancer’s recurrence. But the next step—testing what Retsky did in a large-scale clinical trial—is a long shot given the way cancer treatments are developed today.

Take Michelle Holmes, an associate professor of medicine at Harvard Medical School. She’s been trying for years to raise money for trials on the effects of aspirin on breast cancer. Animal studies, in vitro experiments, and analysis of patient outcomes suggest that aspirin might help inhibit breast cancer from spreading. Yet even her peers on scientific advisory boards appear uninterested, she says. “For some reason a drug that could be patented would get a randomized trial, but aspirin, which has amazing properties, goes unexplored because it’s 99 cents at CVS,” says Holmes.

Increasingly, Big Pharma is betting on new blockbuster cancer drugs that cost billions to develop and can be sold for thousands of dollars a dose. In 2010, each of the top 10 cancer drugs topped more than $1 billion in sales, according to Campbell Alliance, a health-care consulting firm. A decade earlier, only two of them did. Left behind are low-cost alternatives—therapies like Retsky’s or existing off-label medications, including generics—that have shown some merit but don’t have enough profit potential for drug companies to invest in researching them.

The newer drugs have in some cases shown dramatic life-extending results for patients. Yet cancer remains the second-most-common cause of death in the U.S. after heart disease, killing about 580,000 people a year. Worldwide, 60 percent of all cancer deaths occur in developing countries, where experts say the incidence of the disease is growing rapidly, as is a desperate need for affordable care. That has added urgency to an active debate about whether efforts to combat cancer—and where to put scarce research dollars—need to be rethought.

Sukhatme and his wife Vidula, an epidemiologist, are among those trying to do something about it. They have spearheaded a new non-profit,  Global Cures, to promote alternative treatments that are unlikely to attract commercial interest from drug companies. Global Cures calls these forsaken therapies “financial orphans". To help patients and their doctors, the non-profit is producing reports that explain the science behind promising orphan therapies—those that have shown merit in animal studies and limited human data. And Global Cures also has set itself a more challenging goal—to find the money for clinical trials.

Creating an innovative new drug—including everything from early research to late stage trials—costs on average of $1.3 billion, according to the Tufts Center for the Study of Drug Development. Nonetheless, drug development in the United States, even when it is funded in part by taxpayer dollars and encouraged by federal bureaucracies, isn’t geared toward inexpensive alternative treatments.

The NIH, particularly through the National Cancer Institute, contributes to about 15 percent of all clinical trials related to cancer, but the amount it gives is in decline. The agency instead partners with pharmaceutical companies or academic institutions, and the trials the NCI does support usually are for new drugs, not for re-purposing existing ones. 

Low-cost alternatives like aspirin must fight for consideration within a scientific community that is producing effective cancer drugs that can command $100,000 or more for a course of treatment. The escalating prices for these drugs worry many involved in the fight against cancer. Some of the new drugs will eventually be used in combination, a step that could push cost of treatment into the hundreds of thousands, says Lichter.

Since myopia increased 66% between the early 1970s to early 2000s in the United States, it is thought that there are environmental factors at play, namely higher levels of education, all our close-up activities with new technology (reading, computers, tablets, etc.) straining our eyes, and spending too much time indoors. From The Atlantic:

Nearsightedness and the Indoor Life

Over the past 15 years, the world has witnessed an explosion of cases of myopia, or nearsightedness. A quarter of the world's population, or 1.6 billion people, now suffer from some form of myopia, according to the Myopia Institute. If unchecked, those numbers are estimated to reach one-third of the world's population by 2020. 

The 2009 study is hardly the first to suggest that an increase in years of formal education and access to technology across society may account for higher myopia rates in recent years. Ophthalmologists and optometrists have cautioned that close-up activities like reading and using computers, tablets, and smartphones interfere with normal blinking and put a strain on the eyes. When abused, they can lead to double vision, myopia, and serious conditions such as retinal detachment and vision loss. The overuse of handheld electronics such as iPads and tablets by young children is especially worrisome, since their eyes are still developing and are more likely to be affected, according to researchers.

Kathryn Rose, a researcher of visual disorders at the University of Sydney's college of health sciences, recently concluded  that spending too much time indoors also has a huge impact on eyesight deterioration. Rose said in a CNN interview that she was not sure how time spent using digital media relates to myopia progress, but that outdoor light has been shown to have a positive effect on vision. Studies from the U.S., Singapore, and China confirm a link between the time spent outdoors and the prevention of myopia, Rose said. However, both the level of light and the duration of exposure to outdoor light must reach a certain threshold to have a preventive effect, according to one of her studies. Spending at least 10 to 14 hours outside per week may prevent the early onset of myopia, she concluded.

Dr. Maria Liu, head of the Myopia Control Clinic that opened last year, explained that prevention and treatment success depend on early detection. Nearsighted children under 10 could benefit the most from intervention. This age group is also the most susceptible to eye damage from prolonged use of visual media, according to the myopia specialist."The eyeballs are very adaptive while they are developing," Liu told me. "If we impose a lot of near work on the eyes as they are developing, the eyes will interpret nearsightedness as being the normal state."

She explained the rise in myopia prevalence is likely caused by a shift in lifestyle from spending time outdoors to an indoor-oriented existence. Electronic devices play a major role in this shift, especially with young children being introduced to technology at an earlier stage in their life, and using handheld devices that require a smaller working distance than that for a physical book or television.

The Myopia Control Clinic specialists use corrective lenses (novel contact lenses) to slow down myopia in children. If applied early enough, corrective lenses have proven effective in treating the disorder. In cases with very high myopia progression, however, scleral reinforcement surgery is used to reduce or stop further damage caused by high myopia, which often can be degenerative. Atropine is the only drug that so far has proven effective in slowing myopia progression. The drug is used as a second line of treatment after all optical treatments fail.

Although modern lifestyle makes it harder to fight the disorder, there is something parents can do to prevent its early onset."Whether it is because hormonal levels are different outdoors, or because the light intensity is stronger, or because we do less close-up work, it has been shown consistently that outdoor activity is very protective and tends to slow the rate of progression."

Taking frequent 10-minute breaks from near-work and looking in the distance is also recommended, including for young adults who spend a lot of time working on computers or laptops and may suffer from accommodating spasms that cause blurry distance vision and dry eyes. Some specialists recommend limiting time in front of computers, TVs, and handheld devices to 1.5 hours a day, especially for young children.

This study was done on mice, but it would be great if it also holds true for human eyes. Another benefit from daily drinking of coffee! From Science Daily:

A cup of coffee a day may keep retinal damage away, study shows

Aside from java's energy jolt, food scientists say you may reap another health benefit from a daily cup of joe: prevention of deteriorating eyesight and possible blindness from retinal degeneration due to glaucoma, aging and diabetes.

Raw coffee is, on average, just 1 percent caffeine, but it contains 7 to 9 percent chlorogenic acid (CLA), a strong antioxidant that prevents retinal degeneration in mice, according to a Cornell study published in theJournal of Agricultural and Food Chemistry (December 2013).

The retina is a thin tissue layer on the inside, back wall of the eye with millions of light-sensitive cells and other nerve cells that receive and organize visual information. It is also one of the most metabolically active tissues, demanding high levels of oxygen and making it prone to oxidative stress. The lack of oxygen and production of free radicals leads to tissue damage and loss of sight.

In the study, mice eyes were treated with nitric oxide, which creates oxidative stress and free radicals, leading to retinal degeneration, but mice pretreated with CLA developed no retinal damage.

Previous studies have shown that coffee also cuts the risk of such chronic diseases as Parkinson's, prostate cancer, diabetes, Alzheimer's and age-related cognitive declines.

Excellent reason to enjoy coffee every day. From Science Daily:

Increasing consumption of coffee associated with reduced risk of type 2 diabetes, study finds

New research published in Diabetologia (the journal of the European Association for the Study of Diabetes) shows that increasing coffee consumption by on average one and half cups per day (approx 360ml) over a four-year period reduces the risk of type 2 diabetes by 11%. 

The authors examined the associations between 4-year changes in coffee and tea consumption and risk of type 2 diabetes in the subsequent 4 years.

The authors used observational data from three large prospective, US-based studies in their analysis: the Nurses' Health Study (NHS) (female nurses aged 30-55 years, 1986-2006), the NHS II (younger female nurses aged 25-42 years 1991-2007), and the Health Professionals Follow-up Study (HPFS) (male professionals 40-75 years, 1986-2006). The final analysis included 48,464 women in NHS, 47,510 women in the NHS II, and 27,759 men in HPFS.

The authors documented 7,269 incident type 2 diabetes cases, and found that participants who increased their coffee consumption by more than 1 cup/day (median change=1.69 cups/day) over a 4-year period had a 11% lower risk of type 2 diabetes in the subsequent 4-years compared to those who made no changes in consumption. Participants who decreased their coffee intake by 1 cup a day or more (median change=-2 cups/day) had a 17% higher risk for type 2 diabetes. Changes in tea consumption were not associated with type 2 diabetes risk.

Those with highest coffee consumption and who maintained that consumption -- referred to as "high-stable consumers" since they consumed 3 cups or more per day -- had the lowest risk of type 2 diabetes, 37% lower than the "low-stable consumers" who consumed 1 cup or less per day.

While baseline decaffeinated coffee consumption was associated with a lower type 2 diabetes risk, the changes in decaffeinated coffee consumption did not change this risk. 

More studies on the amazing benefits of exercise, or activity, even light activity.  From Science Daily:

Simple tests of physical capability in midlife linked with survival

Low levels of physical capability (in particular weak grip strength, slow chair rise speed and poor standing balance performance) in midlife can indicate poorer chances of survival over the next 13 years, while greater time spent in light intensity physical activity each day is linked to a reduced risk of developing disability in adults with or at risk of developing knee osteoarthritis, suggest two papers published on bmj.com today.

The researchers conclude that there are "robust associations of standing balance time, chair rise speed and grip strength at age 53 with all-cause mortality rates over 13 years of follow-up." They suggest there is value in using these simple tests to assess physical capability in midlife to identify those people who are less likely to achieve a "long and healthy life."

In a linked paper, a team of US researchers set out to investigate whether time spent in light intensity physical activity is related to a reduced risk of developing disability and disability progression.

Their study involved 1,680 men and women aged 49-83 years free of disability, but with or at high risk for developing knee osteoarthritis, a major disability risk factor. The primary outcome was the development of disability at a two-year follow up visit. In total, participants averaged 245 minutes/day of non-sedentary activity, of which the vast majority was light intensity activities (229 minutes/day).

The results show a "significant and consistent relationship between greater time spent in light intensity activity and a reduced risk of developing disability or progression in disability," say the authors.

More details on the second study. From Science Daily:

Light activity every day keeps disability at bay