Skip to content

Human lungs Credit: Wikipedia

We have millions of all sorts of microbes living throughout our respiratory tract (nose, sinuses, mouth, lungs, etc.). A recent study looked at the microbes in the lungs and found that fungi normally live in healthy lungs, including fungi that are usually thought of as harmful. Surprisingly, the fungi found in lungs of people with COPD (chronic obstructive pulmonary disease) are basically similar to those in healthy people.

The fungi living in different parts of the body is the mycobiome. The lung (pulmonary) microbiome is unique, meaning it is different than in other parts of the respiratory tract, such as the mouth. It used to be thought that the lungs were sterile (unless there was an infection). But now we know that is not true - we normally have fungi, bacteria, and viruses living in our lungs.

University of Bergen researchers analyzed both the oral (mouth) mycobiome and lung mycobiome of 93 persons with COPD and 100 healthy persons (the control group). Surprisingly, both the oral and lung mycobiomes of both healthy and COPD groups were dominated by Candida fungi, with more Candida in the mouth, than in the lungs for both groups. Finding that Candida resides in the lungs of heathy individuals was surprising because it can be a "fungal pathogen" (thus harmful and invasive) in different parts of the body.

One piece of good news - using inhaled steroids didn't seem to affect the lung mycobiome.

Keep in mind that fungi are all around us, both indoors and outdoors, and we are constantly breathing in fungal spores. Our bodies have evolved to handle normal amounts just fine. As the researchers wrote: "Healthy airways possess effective removal of such spores". It's when a person is immunocompromised or has COPD that problems can develop.

From Medical Xpress: Fungi are present in your lungs

The lungs were for a long time considered to be sterile in health, while in diseases like chronic obstructive pulmonary disease (COPD) failure in immune mechanisms were thought to allow microorganisms to proliferate and persist. New sequencing techniques have shown that several microorganisms reside in the lungs of healthy individuals, as well. Few studies have examined the fungal community in COPD and compared it to healthy controls using such techniques. ...continue reading "Fungi Are Living In Your Lungs"

This article discusses the fungi living on our skin. Recent research (using state of the art genetic analysis) has found that healthy people have lots of diversity in fungi living on their skin. Certain areas seem to have the greatest populations of fungi: in between toes (average of 40 species), the heel (average of 80 species), toenails (average of 80 species), and the genitals. Currently it is thought that there are "intricate interactions between fungi and immune cells on the skin surface", and that often this mutualistic relationship is beneficial, but at other times dysbiosis (when the microbial community is unbalanced or out of whack) can lead to diseases. If the populations get too unbalanced (e.g., antibiotics can kill off bacteria, and then an increase in fungi populations take their place) then ordinarily non-harmful fungi can become pathogenic. Note that: Mutualistic relationship is a relationship between two different species of organisms in which both benefit from the association. From E-Cronicon:

From Head to Toe: Mapping Fungi across Human Skin

The human microbiota refers to the complex aggregate of fungi, bacteria and archaea, found on the surface of the skin, within saliva and oral mucosa, the conjunctiva, the gastrointestinal. When microbial genomes are accounted for, the term microbiome is deployed. In recent years the first in-depth analysis, using sophisticated DNA sequencing, of the human microbiome has taken place through the U.S. National Institutes of Health led Human Microbiome Project. 

Many of the findings have extended, or even turned upside down, what was previously known about the relationship between humans and microorganisms. One of the most interesting areas related to fungi, especially in advancing our understanding about fungal types, locations and numbers and how this affects health and disease....some parts of the body have a greater prevalence of bacteria (such as the arms) whereas fungi are found in closer association with feet.  

A variety of bacteria and fungi are found on the typical 2 square meters that represent the surface of the skin, and within the deeper layers, of a typical adult. These can be considered as ‘residential’ (that is ordinarily found) or ‘transient’ (carried for a period of time by the host.) The resident microorganism types vary in relation to skin type on the human body; between men and women; and to the geographical region in which people live.

The first observation is that many locations across the skin contain considerable populations of fungi. Prime locations, as reported by Findley and colleagues, were inside the ear canal and behind the ear, within the eyebrows, at the back of the head; with feet: on the heel, toenails, between the toes; and with the rest of the body notable locations were the forearm, back, groin, nostrils, chest, palm, and the elbow.

The second observation is that several different species are found, and these vary according to different niches. Focusing on one ecological niche, a study by Oyeka found that the region between toes, taken from a sample of 100 people, discovered 14 genera of fungi. In terms of the individual species recovered, a relatively high number were observed (an average of 40 species.)....the greatest varieties of fungi are to be found on the heel (approximately 80 different species.) The second most populous area is with the toes, where toe nails recover around 80 different species.....With the genitals, where early investigations had suggested that Candida albicans was the most commonly isolated yeasts. However, an investigation of 83 patients by Bentubo., et al.  showed more variety, with high recoveries of Candida parapsilosis, Rhodotorulamucilaginos, Rhodotorulaglutinis, Candida tropicalis and Trichosporoninkin.

The importance of the investigative work into the human skin fungi helps medical researchers understand more fully the connections between the composition of skin-fungi and certain pathologies. Here the intricate interactions between fungi and immune cells on the skin surface is of importance; often this mutualistic relationship is beneficial, at other times dysbiosis can lead to the manifestation of diseases especially when there is a breakdown of the mutualistic relationship.

Changes to fungal diversity can be associated with several health conditions, including atopic dermatitis, psoriasis, acne vulgaris and chronic wounds. Diversity can alter through the over-use of antibiotics, where a decline in bacterial numbers can lead to a rise in fungal populations occupying the same space.

Moreover, research has indicted that patients who have a primary immunodeficiency are host to more populous fungal communities than healthy people. Here it is suggested that the weaknesses in the immune system allow higher numbers of fungi to survive, and, in turn these weaknesses can lead some ordinarily non-harmful species to become pathogenic. Such opportunistic fungi include species of Aspergillus and Candida.

Guess what? Our microbiome (the collection of microbes living within and on us) also normally contains fungi. This is our mycobiome.  Very little is known about the mycobiome. (in contrast, much, much more is known about the bacteria within us) The fungi within us may be as low as 0.1% of the total microbiota (all our microbes). But what is known is because advanced genetic analyses have been done (specifically "next-generation” sequencing") or culturing of the fungi.

In some studies of fungi in healthy adults, nothing at all is known about up to 50% of the species found. And each human has a diversity or variety of fungi living within them, and these seem to vary between different parts of the body. What little is known is that fungi that we may have thought of as pathogenic (or no good) and involved in diseases (think Candida and Aspergillus) are also found normally in healthy individuals. For example, Candida were found in the mouth or oral microbiome of healthy adults as well as the gut of many healthy adults (thus part of a healthy microbial ecosystem). Some studies suggest that our diet influences which fungi species are present in the gut.

Fungi are both part of health and disease. They interact with the other microbes within us. Some fungi appear to prevent disease by competing with pathogenic organisms (bad bugs).They have functions in our body that we know very little about. We don't know much about disruptions to the fungi in our bodies or even how fungi come to live within us. The following excerpts are from a scholarly article summarizing what is known about our fungi or mycobiome. Written by Patrick C. Seed, from the Cold Spring Harbor Perspectives in Medicine:

The Human Mycobiome

Fungi are fundamental to the human microbiome, the collection of microbes distributed across and within the body... Here, a comprehensive review of current knowledge about the mycobiome, the collective of fungi within the microbiome, highlights methods for its study, diversity between body sites, and dynamics during human development, health, and disease. Early-stage studies show interactions between the mycobiome and other microbes, with host physiology, and in pathogenic and mutualistic phenotypes. Current research portends a vital role for the mycobiome in human health and disease.

In particular, the diversity and dynamics of the so-called mycobiome, the fungi distributed on and within the body, is poorly understood, particularly in light of the considerable association of fungi with infectious diseases and allergy (Walsh and Dixon 1996). Despite being as low as ≤0.1% of the total microbiota (Qin et al. 2010), the fungal constituents of the microbiome may have key roles in maintaining microbial community structure, metabolic function, and immune-priming frontiers, which remain relatively unexplored. Further questions exist as to how fungi interact cooperatively and noncooperatively with nonfungal constituents of the microbiome.

Fungal colonization of the term infant remains poorly characterized. Although it is known that fungi, such as Candida, are prevalent constituents of the vagina through which most infants are delivered, transmission to the newborn is not well documented, and assembly of additional environmental fungi into the microbiome has not been monitored in the otherwise healthy infant.

Although the microbiome of the healthy term infant remains poorly understood, more effort has been placed on understanding fungal colonization of preterm infants. Infants born 8 or more weeks before term and weighing ≤1500 g at birth are at significantly increased risk for invasive fungal disease, primarily with Candida species (spp.) these infants at risk of Candida colonization and infection.

Based on culture-dependent or genus/species-focused culture-independent methods of identification, the fungi of the oral cavity were previously believed to be few and relatively nondiverse. The genera Candida, Saccharomyces, Penicillium,Aspergillus, Scopulariopsis, and Genotrichum were among those previously reported.... In the oral samples from 20 participants, most had ∼15 fungal genera present...To put this level of diversity into context, prior studies have identified more than 50–100 bacterial genera in the healthy oral microbiome.

Of the oral fungal genera noted among each of the healthy subjects from the Ghannoum study (Ghannoum et al. 2010), Candida and Cladosporium were most common, present in 75% and 65% of participants, respectively. Fungal genera associated with local oral and invasive diseases, including Aspergillus,Cryptococcus, Fusarium, and Alternaria were also identified, indicating that these genera are present in the oral microbiome even during a state of health....The discovery of previously unidentified fungi is a reminder that the oral microbiome remains underexplored.

Although the bacterial constituents of the gut-associated microbiome have been intensely studied, the diversity and function of gut-associated fungi is understudied and lags far behind other aspects of microbiome studies.Only recently have larger studies specifically focused on the gut mycobiome been performed. Hoffmann et al. (2013).... from 98 healthy individuals without known gastrointestinal disease. In total, the researchers identified 66 fungal genera with 13 additional taxa for which a genus-level classification was not possible. An estimated 184 species were present in total. Eighty-nine percent of the samples had Saccharomyces present. Candida and Cladosporium were the second and third most prevalent, present in 57% and 42% of samples, respectively. The research was not able to definitively determine whether certain taxa were resident fungal microbota or transient as part of dietary intake.

Mutualism between fungi and humans is generally not well understood and has not been well studied. However, several examples related to the gut microbiome provide evidence of a beneficial relationship. S. boulardii, closely related to Saccharomyces cerevisiae, has been studied in controlled trials for the prevention and mitigation of antibiotic-associated diarrhea, including diarrhea caused by Clostridium difficile...These studies show the potency of fungi to compete with pathogenic organisms, modify intestinal function, and attenuate inflammation, presumably because of an interaction with the intestinal microbiota....A recent retrospective data review suggested an inverse relationship between Candida and C. difficile, pointing to some common impact of yeast on the gut microbiome and the exclusion of C. difficle outgrowth and/or toxin production (Manian and Bryant 2013).

Humans have a lifelong interaction with complex microbial communities distributed across the body, which fundamentally contributes to the development and physiology of the macro-organism. Only recently has the diversity of fungi within the human microbiome begun to be determined, with early studies showing that, although relatively nonabundant, fungi are diverse within the microbiome as a whole. Although still in the early stage, studies suggest complex interactions between fungal and bacterial constituents of the microbiome.

Microspcopic image of intestinal fungus. Credit: Iliyan Iliev