Tag Archives: high fiber diet

Mediterranean Diet is Healthy Eating – A Good Option for Seniors Another study finding health benefits of a fiber rich diet, which means lots of fruits, vegetables, whole grains, legumes (beans), nuts, and seeds. This time, researchers doing an a analysis of 2 studies lasting over a number of years found that there was an association with more fiber in the diet and less risk of developing knee osteoarthritis pain and of knee osteoarthritis symptoms worsening. The highest fiber group reported eating a median (middle number) 25.5 grams of fiber per day, while the lowest fiber group had a median of about 9 grams of fiber per day. They found a dose dependent relationship - the more fiber, the less osteoarthritis knee pain, and vice versa (the less daily fiber, the more they reported knee pain worsening) - this is called a "dose-dependent inverse relationship". The average fiber intake for Americans is about 15 grams per day.

The researchers also found that the more fiber in the diet, the lower their Body Mass Index (less weight) - but they say they took that into account in the analyses, and found that the amount of fiber intake was the most important thing regarding knee osteoarthritis pain. Interestingly, they did not find an association of fiber intake and x-ray evidence of osteoarthritis.  Note that this was an observational study - it observed that certain things go hand in hand, but it doesn't prove causation.

Osteoarthritis (OA) is common among adults aged 60 years and older, and is sometimes called "wear and tear" arthritis because it affects the joints. It causes pain and limits a person's physical functioning. There is a strong association between obesity, inflammation, and knee osteoarthritis. Obesity causes both inflammation and puts extra weight on the knees, and inflammation results in more joint pain. On the other hand, a high fiber diet reduces inflammation. The researchers point out that the data shows "a consistent protective association" between fiber in the diet and symptoms of knee osteoarthritis (no matter if you're overweight or not). IN SUMMARY: Eat lots of fruits, vegetables, legumes, whole grains, and nuts! From Science Daily:

Fiber-rich diet linked to lowered risk of painful knee osteoarthritis

A fibre-rich diet is linked to a lowered risk of painful knee osteoarthritis, finds the first study of its kind, published online in the Annals of the Rheumatic Diseases. The findings, which draw on two different long term studies, are broadly in line with the other reported health benefits of a fibre-rich diet. These include reductions in blood pressure, weight, and systemic inflammation, and improved blood glucose control.

The researchers mined data from two US studies in a bid to find out if dietary fibre might have any bearing on the risks of x-ray evidence of knee osteoarthritis, symptomatic knee osteoarthritis (x-ray evidence and symptoms, such as pain and stiffness), and worsening knee pain. The first of these studies was the Osteoarthritis Initiative (OAI). This has been tracking the health of nearly 5000 US men and women with, or at risk of, osteoarthritis since 2004-6 (average age 61), to pinpoint potential risk factors for the condition.  The second was part of the Framingham Offspring cohort study, which has been tracking the health of more than 1200 adult children of the original Framingham Heart Study and their partners since 1971.

Analysis of the data showed that eating more fibre was associated with a lower risk of painful knee osteoarthritis. Compared with the lowest intake (bottom 25 per cent of participants), the highest intake (top 25 per cent) was associated with a 30 per cent lower risk in the OAI and a 61 per cent lower risk in the Framingham study. But it was not associated with x-ray evidence of knee osteoarthritis. Additionally, among the OAI participants, eating more fibre in general, and a high cereal fibre intake, were associated with a significantly lower risk of worsening knee pain.

This is an observational study, so no firm conclusions can be drawn about cause and effect. Nevertheless, the researchers say: "These data demonstrate a consistent protective association between total fibre intake and symptom-related knee [osteoarthritis] in two study populations with careful adjustment for potential confounders." [Original study.]

 An interesting study that showed that when gut microbes are deprived of dietary fiber (their food) they start to eat the natural layer of mucus that lines the colon. (The colon is part of the large intestine). This is important because the colon's mucus layer normally acts as a barrier to pathogenic microbes. Yes, it was done in mice, but the researchers feel that this study accurately models what also happens in humans. Their conclusion: when the microbes in the gut don't get enough dietary fiber from plants (such as whole grains, fruits, vegetables, seeds, nuts), then the microbes feed on the colon's mucus layer, which results in inflammation and makes the colon more vulnerable to pathogenic (disease causing) microbes. This is what some people refer to as "leaky gut".

Research shows that changes in the diet (high fiber vs low fiber) quickly results in changes in the gut microbes in humans and rodents - so it's important to consistently eat a lot of a variety of plant fiber. Currently the recommended daily fiber intake for adults is for 28 to 35 grams (chart of some high fiber foods). They found that some bacteria strains flourished the best in low or no fiber conditions and it was these bacteria that were involved in breaking down the mucus layer. The research also showed that what are called "prebiotics" (purified forms of soluble fiber similar to what some processed foods and supplements contain) also resulted in thinning of the colon's mucus layer - they did not properly feed the gut microbes. From Medical Xpress:

High-fiber diet keeps gut microbes from eating colon's lining, protects against infection

It sounds like the plot of a 1950s science fiction movie: normal, helpful bacteria that begin to eat their host from within, because they don't get what they want. But new research shows that's exactly what happens when microbes inside the digestive system don't get the natural fiber that they rely on for food. Starved, they begin to munch on the natural layer of mucus that lines the gut, eroding it to the point where dangerous invading bacteria can infect the colon wall. In a new paper in Cell, an international team of researchers show the impact of fiber deprivation on the guts of specially raised mice. The mice were born and raised with no gut microbes of their own, then received a transplant of 14 bacteria that normally grow in the human gut. 

The findings have implications for understanding not only the role of fiber in a normal diet, but also the potential of using fiber to counter the effects of digestive tract disorders. "The lesson we're learning from studying the interaction of fiber, gut microbes and the intestinal barrier system is that if you don't feed them, they can eat you," says Eric Martens, Ph.D., an associate professor of microbiology at the University of Michigan Medical School....Using U-M's special gnotobiotic, or germ-free, mouse facility, and advanced genetic techniques that allowed them to determine which bacteria were present and active under different conditions, they studied the impact of diets with different fiber content - and those with no fiber. They also infected some of the mice with a bacterial strain that does to mice what certain strains of Escherichia coli can do to humans - cause gut infections that lead to irritation, inflammation, diarrhea and more.

The result: the mucus layer stayed thick, and the infection didn't take full hold, in mice that received a diet that was about 15 percent fiber from minimally processed grains and plants. But when the researchers substituted a diet with no fiber in it, even for a few days, some of the microbes in their guts began to munch on the mucus.They also tried a diet that was rich in prebiotic fiber - purified forms of soluble fiber similar to what some processed foods and supplements currently contain. This diet resulted in the same erosion of the mucus layer as observed in the lack of fiber.

The researchers also saw that the mix of bacteria changed depending on what the mice were being fed, even day by day. Some species of bacteria in the transplanted microbiome were more common - meaning they had reproduced more - in low-fiber conditions, others in high-fiber conditions. And the four bacteria strains that flourished most in low-fiber and no-fiber conditions were the only ones that make enzymes that are capable of breaking down the long molecules called glycoproteins that make up the mucus layer....  Just like the mix of bacteria, the mix of enzymes changed depending on what the mice were being fed, with even occasional fiber deprivation leading to more production of mucus-degrading enzymes.

Images of the mucus layer, and the "goblet" cells of the colon wall that produce the mucus constantly, showed the layer was thinner the less fiber the mice received. While mucus is constantly being produced and degraded in a normal gut, the change in bacteria activity under the lowest-fiber conditions meant that the pace of eating was faster than the pace of production - almost like an overzealous harvesting of trees outpacing the planting of new ones. 

When the researchers infected the mice with Citrobacter rodentium - the E. coli-like bacteria - they observed that these dangerous bacteria flourished more in the guts of mice fed a fiber-free diet. Many of those mice began to show signs of illness and lost weight. When the scientists looked at samples of their gut tissue, they saw not only a much thinner or even patchy mucus later - they also saw inflammation across a wide area. Mice that had received a fiber-rich diet before being infected also had some inflammation but across a much smaller area. [Original study]

High-fiber diet keeps gut microbes from eating colon's lining, protects against infection A thick mucus layer (green), generated by the cells of the colon's wall, provides protection against invading bacteria and other pathogens. This image of a mouse's colon shows the mucus (green) acting as a barrier for the "goblet" cells (blue) that produce it. Credit: University of Michigan

 Another article commenting that increasing the amount of dietary fiber eaten by people eating a typical Western diet (which is low in fiber) will improve their gut microbiome (community of microbes). Research is finding that the added dietary fiber is food (nutrition) for microbes in the gut, and eating additional fiber daily will help restore or increase bacterial diversity, which then should lead to health benefits. Note: Easy ways to increase dietary fiber are increasing intake of whole grains, legumes, nuts, seeds, fruits, and vegetables. Think of food writer Michael Pollan's advice: "Eat food. Not too much. Mostly plants."

Researchers feel that fiber intake needs to be increased to more than current dietary guidelines, and that beneficial effects to the microbiome starts to occur rapidly (within 2 weeks) of changing to a higher fiber diet. This post from January 21, 2016 discussed the Sonnenburg research on gut microbe depletion (from a low fiber diet), and this April 28, 2015 post discussed the O'Keefe research (changing the diet has big effect on colon cancer risk) - both studies are mentioned below. See the page Feeding Your Gut Microbes for more information. From Science Daily:

Can more fiber restore microbiome diversity?

Scientists are pushing to restore human health in Western countries by changing our diet to restore the microbial species lost over the evolution of Western diet. Researchers advocate for strategically increasing dietary fiber intake as one path forward in regaining microbial biodiversity.

Insufficient nutrients for our gut microbes have been linked to a loss of certain beneficial bacterial species in industrialized societies and are likely impacting our immunological and metabolic health, although more data is needed. For example, most Westerners consume half of the amount of dietary fiber recommended by dietary guidelines, which nutritionists refer to as the "fiber gap," which is a problem because dietary fiber is the primary source of nutrition (e.g., carbohydrates) accessible to gut bacteria in humans.

"The idea to boost fiber levels is not new," says Jens Walter of the University of Alberta, Canada. "However, depletion of the microbiome adds a new perspective to this low-fiber Western diet that we are currently eating." Earlier this year, Stanford University's Justin Sonnenburg found that mice fed a typical Western diet (high in fat and carbohydrates and low in fiber) transferred a lower diversity of beneficial microbial species to future generations. The re-introduction of the microbes' preferred fiber at that stage did not result in a return of some (good) species, indicating that extinctions had occurred in only a few generations.

Walter and co-author Edward Deehan, his PhD student, are concerned that a dramatic shift away from a diet similar to the one under which the human-microbiome symbiosis evolved is a key factor in the rise of non-communicable disorders like obesity. "There is a lot of epidemiological evidence that fiber is beneficial, and food products containing dietary fiber have FDA-approved health claims for both colon cancer and coronary heart disease. There is also quite a bit of clinical evidence (although it is less consistent)," Walter says. "The most pressing issue at the moment that neither consumption of fiber in society nor the doses used in clinical research are high enough."

Walter has noticed that often researchers evaluating fiber doses in diets and health outcomes do so with "doses of fiber that [he] would consider physiologically irrelevant. Most of these studies use 5-15 grams of fiber; I would not think that these amounts would be actually beneficial," he says.

People living in non-industrialized societies have an average intake of fiber that is much higher than the low norms of Western societies. The authors note the recent work from the Stephen J.D. O'Keefe lab in Nature Communications in which modern African-Americans were given a traditional South-African diet that contained 55 grams of daily dietary fiber and had improved markers for colon cancer within two weeks.

 A recent study using mice, and following them for 4 generations, has implications for Americans who typically eat a low-fiber diet (average of 15 grams daily). Note that current dietary guidelines recommend that women should eat around 25 grams and men 38 grams daily of fiber.The researchers found that low-fiber diets not only deplete the complex microbial ecosystems residing in the gut, but can cause an irreversible loss of diversity within those ecosystems in as few as three or four generations.

This is because fiber feeds the millions of microbes in the gut - and so a fiber-rich diet can nourish a wide variety of gut microbes, but a low-fiber diet can only sustain a narrower community. As the generations went by, the rodents’ guts became progressively less diverse, as more and more species were extinguished. If the fourth-generation mice switched to high-fiber meals, some of the missing microbes rebounded, but most did not. It took a fecal transplant (mice style) to get back the missing microbes. From Science Daily:

Low-fiber diet may cause irreversible depletion of gut bacteria over generations

A study by Stanford University School of Medicine investigators raises concerns that the lower-fiber diets typical in industrialized societies may produce internal deficiencies that get passed along to future generations. The study, conducted in mice, indicates that low-fiber diets not only deplete the complex microbial ecosystems residing in every mammalian gut, but can cause an irreversible loss of diversity within those ecosystems in as few as three or four generations.

Once an entire population has experienced the extinction of key bacterial species, simply "eating right" may no longer be enough to restore these lost species to the guts of individuals in that population, the study suggests. Those of us who live in advanced industrial societies may already be heading down that path.

The proliferation of nearly fiber-free, processed convenience foods since the mid-20th century has resulted in average per capita fiber consumption in industrialized societies of about 15 grams per day. That's as little as one-tenth of the intake among the world's dwindling hunter-gatherer and rural agrarian populations, whose living conditions and dietary intake presumably most closely resemble those of our common human ancestors, said Justin Sonnenburg, PhD, associate professor of microbiology and immunology and senior author of the study, to be published Jan. 13 in Nature.

Virtually all health experts agree that low-fiber diets are suboptimal. Probably the chief reason for this is that fiber, which can't be digested by human enzymes, is the main food source for the commensal bacteria that colonize our colons, Sonnenburg said. Thousands of distinct bacterial species inhabit every healthy individual's large intestine. "We would have difficulty living without them," he said. "They fend off pathogens, train our immune systems and even guide the development of our tissues."

Surveys of humans' gut-dwelling microbes have shown that the diversity of bacterial species inhabiting the intestines of individual members of hunter-gatherer and rural agrarian populations greatly exceeds that of individuals living in modern industrialized societies, Sonnenburg said. In fact, these studies indicate the complete absence, throughout industrialized populations, of numerous bacterial species that are shared among many of the hunter-gatherer and rural agrarian populations surveyed, despite those groups' being dispersed across vast geographic expanses ranging from Africa to South America to Papua New Guinea.

The Stanford researchers employed young laboratory mice that had been specially bred and raised in aseptic environments so that, unlike ordinary mice (and ordinary humans), their intestines were devoid of any microbial inhabitants. After populating the mice's guts with microbes from a human donor, the scientists divided them into two groups. One group was fed a diet rich in plant-derived fiber. The other group's diet, equivalent to the first with respect to protein, fat and calories, was practically devoid of fiber content.

During the experimentation that followed, the researchers analyzed fecal samples from the animals. The two groups' gut-bacteria profiles were initially indistinguishable but soon diverged. "Within a couple of weeks, we saw a massive change," said Justin Sonnenburg. "The low-fiber-intake mice harbored fewer bacterial species in their gut." More than half of these bacterial species' numbers had dwindled by over 75 percent, and many species seemed to have disappeared altogether.

After seven weeks, the mice that had consumed a low-fiber diet were switched back to a high-fiber diet for four weeks. The mice's gut-bacteria profiles partly recovered -- probably due to an uptick in abundance of some bacteria whose ranks had declined to undetectable levels during the low-fiber-intake period. Still, this restoration was only partial: One-third of the original species never fully recovered despite their return to a high-fiber diet. No such changes were seen in the control mice consistently fed a high-fiber diet.

The real surprise came after mice had been bred and maintained on low-fiber diets for a few generations. In their experimental confines, these mice were exposed to microbes only through contact with their parents. Each successive generation's gut-bacterial ecosystem declined in diversity. By generation four, the depletion had reached a point where nearly three-quarters of the bacterial species resident in their great-grandparents' guts appeared absent in their own. Even after these mice were put back on a high-fiber diet, more than two-thirds of the bacterial species identified in the guts of their first-generation ancestors proved irretrievable, indicating extinction of those species by the fourth generation of fiber deprivation.

On the other hand, a somewhat more aggressive measure -- fecal transplantation -- did result in these lost species' retrieval, the study found. Introducing fecal contents of fourth-generation high-fiber-diet mice into the intestines of fourth-generation low-fiber mice, together with putting them on the high-fiber diet for two weeks, fully restored their bacterial profiles. Within 10 days of the procedure, the composition and diversity of the bacteria in the intestines of this group were indistinguishable from those of control mice.

This study confirms all my recent posts on the importance of fiber, fruits, vegetables, whole grains, seeds, nuts, and legumes for beneficial gut bacteria health (have to feed them!). This study found dramatic changes in the colon (specifically in the colonic mucosa) from dietary changes in as little as 2 weeks. In the study the Americans ate the typical low-fat, high fiber diet of South Africa which included foods such as hi-maize corn fritters, beans, salmon croquettes, spinach, red pepper and onions, homemade tater tots, mango slices,okra, tomatoes, corn muffins, black-eyed peas, and pineapple. Meanwhile, people in South Africa ate an “American” high-fat, low-fiber diet: Foods included beef sausage links and pancakes for breakfast; hamburger and French fries for lunch; and meatloaf and rice for dinner. From Science Daily:

Diet swap has dramatic effects on colon cancer risk for Americans and Africans

Scientists have found dramatic effects on risk factors for colon cancer when American and African volunteers swapped diets for just two weeks. Western diets, high in protein and fat but low in fibre, are thought to raise colon cancer risk compared with African diets high in fibre and low in fat and protein.The new study, published in Nature Communications today, confirms that a high fibre diet can substantially reduce risk, and shows that bacteria living in the gut play an important role in this effect.

Colon cancer is the fourth commonest cause of death from cancer worldwide, accounting for over 600,000 deaths per year. Colon cancer rates are much higher in the western world than in Africa or the Far East, yet in the United States, African Americans shoulder the greatest burden of the disease.

To investigate the possible roles of diet and gut bacteria, an international team including scientists from the University of Pittsburgh and Imperial College London carried out a study with a group of 20 African American volunteers and another group of 20 participants from rural South Africa. The two groups swapped diets under tightly controlled conditions for two weeks.... At the start, when the groups had been eating their normal diets, almost half of the American subjects had polyps -- abnormal growths in the bowel lining that may be harmless but can progress to cancer. None of the Africans had these abnormalities.

After two weeks on the African diet, the American group had significantly less inflammation in the colon and reduced biomarkers of cancer risk. In the African group, measurements indicating cancer risk dramatically increased after two weeks on the western diet.

"The findings suggest that people can substantially lower their risk of colon cancer by eating more fibre. This is not new in itself but what is really surprising is how quickly and dramatically the risk markers can switch in both groups following diet change. These findings also raise serious concerns that the progressive westernization of African communities may lead to the emergence of colon cancer as a major health issue."

Professor Stephen O'Keefe at the University of Pittsburgh, who directed the study, said: "Studies on Japanese migrants to Hawaii have shown that it takes one generation of westernization to change their low incidence of colon cancer to the high rates observed in native Hawaiians. Our study suggests that westernization of the diet induces changes in biomarkers of colon cancer risk in the colonic mucosa within two weeks. Perhaps even more importantly, a change in diet from a westernized composition to a 'traditional African' high fiber low fat diet reduced these biomarkers of cancer risk within two weeks, indicating that it is likely never too late to change your diet to change your risk of colon cancer."

The study found that a major reason for the changes in cancer risk was the way in which the bacteria in the gut -- known as the microbiome -- altered their metabolism to adapt to the new diet. In the American group, the researchers found that the African diet led to an increase in the production of butyrate, a byproduct of fibre metabolism that has important anti-cancer effects.

The American subjects switched to a low-fat, high-fibre diet based on that of rural Africans in KwaZulu-Natal.Photograph: brianafrica / Alamy/Alamy

Discussions of the benefits of dietary fiber seem to be everywhere this week. From Forbes:

Eat Whole Grains For A Long Life, New Study Says

Eating lots of whole grains – especially those high in cereal fiber – may help people live longer, according to new research. The study out in BMC Medicine this week suggests that eating hefty amounts of cereal fibers can help reduce the risk of death from a number of causes, including cancer and diabetes, by almost 20%. Previous research has certainly linked whole grains to the reduction of certain chronic diseases and to reduced mortality, but this one is the largest of its kind to show a reduction in death from a number of different causes. So if you want to live longer, grab a bowl of cereal. The less refined, the better.

Whole grains are grains in their most unadulterated form, still containing the endosperm, bran, and germ – most of the plant’s nutritional value lies in the bran and germ. When grains go through milling to become processed or refined, they’re typically stripped of the bran and germ parts, along with a number of B vitamins, fiber, and iron.

In the new study, the Harvard Medical School team tracked over 367,000 healthy people who were taking part in the NIH-AARP Diet and Health Study, for an average of 14 years. ..It turned out that people who ate more whole grains – 1.2 ounces of per day, on average – had a 17% reduced risk of death, compared to those who ate much less, around 0.13 ounces per day. And when it came to the cereal fiber itself, people who ate the most had a 19% reduced risk of death from any cause, compared to those who ate the least.

The researchers even broke it down by disease: People who ate the highest amounts of whole grains had a 48% reduced risk of death from diabetes, and an 11% reduced risk of dying from respiratory diseases. And people who ate the most cereal fiber had 15% and 34% reduced risk of death from cancer and diabetes, respectively. 

The study cannot of course determine causation, since it’s just observational...Still, a number of studies have pointed to a strong connection between whole grains and improved health and longevity in recent years. It may be the anti-inflammatory properties of fiber per se – and its effect of reducing c-reactive protein (CRP) and tumor necrosis factor – that are responsible for their health benefits. If you’re going to up your grain intake, make sure to choose whole ones, like steel cut oats, quinoa, or even whole grain bread, over refined ones like cereal flakes or white bread. 

From Scientific American: Fiber-Famished Gut Microbes Linked to Poor Health

Your gut is the site of constant turf wars. Hundreds of bacterial species—along with fungi, archaea and viruses—do battle daily, competing for resources. Some companies advocate for consuming more probiotics, live beneficial bacteria, to improve microbial communities in our gut, but more and more research supports the idea that the most powerful approach might be to better feed the good bacteria we already harbor. Their meal of choice? Fiber.  

Fiber has long been linked to better health, but new research shows how the gut microbiota might play a role in this pattern. One investigation discovered that adding more fiber to the diet can trigger a shift from a microbial profile linked to obesity to one correlated with a leaner physique. Another recent study shows that when microbes are starved of fiber, they can start to feed on the protective mucus lining of the gut, possibly triggering inflammation and disease.

"Diet is one of the most powerful tools we have for changing the microbiota," Justin Sonnenburg, a biologist at Stanford University, said earlier this month at a Keystone Symposia conference on the gut microbiome. "Dietary fiber and diversity of the microbiota complement each other for better health outcomes." In particular, beneficial microbes feast on fermentable fibers—which can come from various vegetables, whole grains and other foods—that resist digestion by human-made enzymes as they travel down the digestive tract. These fibers arrive in the large intestine relatively intact, ready to be devoured by our microbial multitudes. Microbes can extract the fiber's extra energy, nutrients, vitamins and other compounds for us. Short-chain fatty acids obtained from fiber are of particular interest, as they have been linked to improved immune function, decreased inflammation and protection against obesity.

Today's Western diet, however, is exceedingly fiber-poor by historical standards. It contains roughly 15 grams of fiber daily, Sonnenburg noted. For most of our early history as hunter-gatherers, we were likely eating close to 10 times that amount of fiber each day. "Imagine the effect that has on our microbiota over the course of our evolution," he said.

Not all helpful fiber, however, needs to come from the roots and roughage for which our ancestors foraged, new research suggests. Kelly Swanson, a professor of comparative nutrition at the University of Illinois at Urbana-Champaign, and his team found that simply adding a fiber-enriched snack bar to subjects' daily diets could swing microbial profiles in a matter of weeks... The findings were published in the January issue of the American Journal of Clinical Nutrition.

As gut microbes are starved of fermentable fiber, some do die off. Others, however, are able to switch to another food source in the gut: the mucus lining that helps keep the gut wall intact and free from infection. In a recent study presented at the Keystone meeting, Eric Martens of the University of Michigan Medical School, postdoctoral researcher Mahesh Desai and their colleagues found that this fuel switch had striking consequences in rodents. A group of mice fed a high-fiber diet had healthy gut lining, but for mice on a fiber-free diet, "the mucus layer becomes dramatically diminished," he explained at the meeting. This shift might sometimes have severe health consequences. Research by a Swedish team, published last year in the journal Gut, showed a link between bacteria penetrating the mucus layer and ulcerative colitis, a painful chronic bowel disease.

A third group of mice received high-fiber chow and fiber-free chow on alternating days—"like what we would do if we were being bad and eating McDonald's one day and eating our whole grains the next," Martens joked. Even the part-time high-fiber diet was not enough to keep guts healthy: these mice had a mucus layer about half the thickness of mice on the consistently high-fiber diet. If we can extend these results to humans, he said, it "tells us that even eating your whole fiber foods every other day is still not enough to protect you. You need to eat a high-fiber diet every day to keep a healthy gut." Along the same lines, Swanson's group found that the gut microbiomes of his adult subjects reverted back to initial profiles as soon as the high-fiber bars were discontinued.

In the past year I keep coming across one special gut microbe: Faecalibacterium prausnitzii. This bacteria is considered beneficial and is one of the most prevalent intestinal bacterial species in healthy adults. The reduction of this bacteria in the gut (as measured by analyzing bacteria in fecal samples) is seen in several diseases, including Intestinal Bowel Disease (IBD). This bacteria has also been found to be anti-inflammatory. In other words, you really, really want a healthy population in your gut. But now the question is: how does the bacteria get there? And how can you increase it if you have a low population in your gut? It certainly isn't found in any probiotic supplement that I know of.  Part of the answer seems to be eating foods with fiber, lots of it, to feed the good microbes. Eat fruits, vegetables, whole grains, seeds, legumes, and nuts. This lengthy article also discusses the importance of keystone species (F. prausnitzii is one).From Scientific American:

Among Trillions of Microbes in the Gut, a Few Are Special

In the mid-2000s Harry Sokol, a gastroenterologist at Saint Antoine Hospital in Paris, was surprised by what he found when he ran some laboratory tests on tissue samples from his patients with Crohn's disease, a chronic inflammatory disorder of the gut.. But when Sokol did a comparative DNA analysis of diseased sections of intestine surgically removed from the patients, he observed a relative depletion of just one common bacterium, Faecalibacterium prausnitzii. Rather than “bad” microbes prompting disease, he wondered, could a single “good” microbe prevent disease?

Sokol transferred the bacterium to mice and found it protected them against experimentally induced intestinal inflammation. And when he subsequently mixed F. prausnitzii with human immune cells in a test tube, he noted a strong anti-inflammatory response. Sokol seemed to have identified a powerfully anti-inflammatory member of the human microbiota.

Each of us harbors a teeming ecosystem of microbes that outnumbers the total number of cells in the human body by a factor of 10 to one and whose collective genome is at least 150 times larger than our own... The microbiome varies dramatically from one individual to the next and can change quickly over time in a single individual. The great majority of the microbes live in the gut, particularly the large intestine, which serves as an anaerobic digestion chamber. 

Independent researchers around the world have identified a select group of microbes that seem important for gut health and a balanced immune system. They belong to several clustered branches of the clostridial group. Dubbed “clostridial clusters,” these microbes are distantly related to Clostridium difficile, a scourge of hospitals and an all too frequent cause of death by diarrhea. But where C. difficile prompts endless inflammation, bleeding and potentially catastrophic loss of fluids, the clostridial clusters do just the opposite—they keep the gut barrier tight and healthy, and they soothe the immune system. Scientists are now exploring whether these microbes can be used to treat a bevy of the autoimmune, allergic and inflammatory disorders that have increased in recent decades, including Crohn's and maybe even obesity.

F. prausnitzii was one of the first clostridial microbes to be identified. In Sokol's patients those with higher counts of F. prausnitzii consistently fared best six months after surgery. After he published his initial findings in 2008, scientists in India and Japan also found F. prausnitzii to be depleted in patients with inflammatory bowel disease...This suggested that whereas different genetic vulnerabilities might underlie the disorder, the path to disease was similar: a loss of anti-inflammatory microbes from the gut. And although Sokol suspects that other good bacteria besides F. prausnitzii exist, this similarity hinted at a potential one-size-fits-all remedy for Crohn's and possibly other inflammatory disorders: restoration of peacekeeping microbes.

One of the questions central to microbiome research is why people in modern society, who are relatively free of infectious diseases, a major cause of inflammation, are so prone to inflammatory, autoimmune and allergic diseases. Many now suspect that society-wide shifts in our microbial communities have contributed to our seemingly hyperreactive immune systems. Drivers of these changes might include antibiotics; sanitary practices that are aimed at limiting infectious disease but that also hinder the transmission of symbiotic microbes; and, of course, our high-sugar, high-fat modern diet. Our microbes eat what we eat, after all. Moreover, our particular surroundings may seed us with unique microbes, “localizing” our microbiota.

A number of studies have found a small but significant correlation between the early-life use of antibiotics and the later development of inflammatory disorders, including asthma, inflammatory bowel disease and, more recently, colorectal cancer and childhood obesity. One explanation for this association might be that sickly people take more antibiotics. Antibiotics are not the cause, in other words, but the result of preexisting ill health. Honda's studies suggest another explanation: antibiotics may deplete the very bacteria that favorably calibrate the immune system, leaving it prone to overreaction. 

A number of studies over the years have linked having fewer sanitary amenities in childhood with a lower risk of inflammatory bowel disease in adulthood. And a 2014 study from Aarhus University in Denmark found that among northern Europeans, growing up on a farm with livestock—another microbially enriched environment—halved the risk of being stricken with inflammatory bowel disease in adulthood.

These patterns suggest that perhaps by seeding the gut microbiota early in life or by direct modification of the immune system the environment can affect our risk of inflammatory bowel disease despite the genes we carry. And they raise the question of what proactive steps those of us who do not live on farms can take to increase our chances of harboring a healthy mix of microbes.

One of the more surprising discoveries in recent years is how much the gut microbiota of people living in North America differs from those of people living in rural conditions in Africa and South America. The microbial mix in North America is geared to digesting protein, simple sugars and fats, whereas the mix in rural African and Amazonian environments is far more diverse and geared to fermenting plant fiber. Some think that our hunter-gatherer ancestors harbored even greater microbial diversity in their guts.

What troubles Sonnenburg about this shift is that the bacteria that seem most anti-inflammatory—including the clostridial clusters—often specialize in fermenting soluble fiber...Some hunter-gatherers consumed up to 10 times as much soluble fiber as modern populations, and their bodies likely were flooded with far more fermentation by-products. Our fiber-poor modern diet may have weakened that signal, producing a state of “simmering hyperreactivity,” Sonnenburg says, and predisposing us to the “plagues” of civilization. He calls this problem “starving our microbial self.” We may not be adequately feeding some of the most important members of our microbiota.

Mouse experiments support the idea. Diets high in certain fats and sugars deplete anti-inflammatory bacteria, thin the mucous layer and foster systemic inflammation. ...In rodents, adding fermentable fiber to a diet otherwise high in fat keeps the “good” microbes happy, the mucous layer healthy and the gut barrier intact, and it prevents systemic inflammation. Taken together, these studies suggest that it is not only what is in your food that matters for your health but also what is missing.

The human studies are even more intriguing... Scientists at Catholic University of Louvain in Belgium recently showed that adding inulin, a fermentable fiber, to the diet of obese women increased counts of F. prausnitzii and other clostridial bacteria and reduced that dangerous systemic inflammation...Those without the bacteria did not benefit, which suggests that once species disappear from the “microbial organ,” the associated functions might also vanish. These individuals might not require ecosystem engineering so much as an ecosystem restoration.

DANGEROUS OPPORTUNIST: Bilophila wadsworthia, a species of bacterium linked to inflammatory bowel disease, bloomed in the microbiota of human volunteers fed a high-fat, high-protein diet in a recent experiment. CREDIT: KARILOUNATMAA Science Source

If you missed these recent articles about weight and gut bacteria, please go read them now. Amazing stuff. From the December 9, 2013 Washington Post:

The microbes in your gut may be making you fat or keeping you thin

 ...a growing body of evidence suggesting that naturally occurring bacteria and other microbes in the body, and possibly even viruses, can influence weight in ways that scientists are only just beginning to understand. Numerous studies are underway looking at the role of intestinal organisms in obesity, with a focus on how they extract energy from food and how this affects weight gain or loss.

From September 5, 2013 Science News: Gut infections keep mice lean

Skinniness could be contagious. Gut bacteria from thin people can invade the intestines of mice carrying microbes from obese people. And these invaders can keep mice from getting tubby, researchers report in the Sept. 6 Science.

But the benefits come with a catch. The invading microbes drop in and get to work only when mice eat healthy food. Even fat-blocking bacteria can’t fight a bad diet, suggests study leader Jeffrey Gordon, a microbiologist at Washington University in St. Louis. 

Fat and thin people have different microbes teeming in their intestines, for example. And normal-weight mice given microbes from obese mice pack on extra fat, says coauthor Vanessa Ridaura, also of Washington University.