Skip to content

Should tackle football continue to be played in its current form? A study with horrifying results that was published this week in the Journal of the American Medical Association raises that question once again.

The study examined 202 brains of people who had formerly played football for varying lengths of time and at varying levels (some who only played pre-high school, some at high school, college level, semi-professional, or Canadian football league). They found the highest percentage of  the degenerative brain disease chronic traumatic encephalopathy (CTE) among former NFL players (110 out of 111 brains). However, the overall incidence of CTE was 87% when looking at all 202 brains.

They also found that the 3 out of 14 former high school players had mild CTE, but the majority of former college, semiprofessional, and professional players had severe CTE.

The one thing to keep in mind is that the study only examined donated brains of former football players  - which means that the family members were concerned about CTE in the former player (perhaps there were symptoms suggestive of CTE). So we don't know the actual percentage of CTE in currently playing and former football players. But studies (here. here, and here) do show damage from hits received during football games and practice at even the grammar and high school level - and the damage can be from subconcussive hits.

But note that concussions and subconcussive hits (head trauma) also occur in other sports, such as soccer. Everyone agrees we need more studies, and we also need to rethink how some games are played in childhood to protect developing brains.

From NPR: Study: CTE Found In Nearly All Donated NFL Player Brains

As the country starts to get back into its most popular professional team sport, there is a reminder of how dangerous football can be. An updated study published Tuesday by the Journal of the American Medical Association on football players and the degenerative brain disease chronic traumatic encephalopathy reveals a striking result among NFL players. ...continue reading "CTE Found In Majority Of Former Football Player Donated Brains"

Did you know that you exchange some skin microbes with the person you live with? A recent study looked at the microbial communities on different regions of the skin of 10 heterosexual couples living together. The researchers found that cohabitation resulted in microbes being shared, but that a person's own microbes were more important, as well as their biological sex and what region of the skin was sampled. In other words - people's microbes look more like their own microbiome than that of their significant other.

Skin is the largest organ of the body, and it is a protective barrier between a person and its environment. The skin contains a diverse microbial community of largely beneficial and benign microorganisms, and also protects the body from microorganisms with the potential to cause disease. Studies show that at least one million microbes (bacteria, fungi, viruses, archaea, etc.) occupy each square centimeter of skin. Humans shed over one million biological particles per hour.

The researchers also found that female skin microbial communities were more diverse than that of males, and that spending more time outdoors, owning pets, and drinking less alcohol (or none) were all associated with higher levels of microbial skin diversity. They found that a person's biological sex could be determined 100% of the time from microbes on the inner thigh skin. The skin of the feet had the most matched microbes among couples - perhaps when they walk barefoot on floors and the shower, they are sharing microbes (from skin particles that had been shed). From Science Daily:

Not under the skin, but on it: Living together brings couples' microbiomes together

Couples who live together share many things: Bedrooms, bathrooms, food, and even bacteria. After analyzing skin microbiomes from cohabitating couples, microbial ecologists at the University of Waterloo, in Canada, found that people who live together significantly influence the microbial communities on each other's skinThe commonalities were strong enough that computer algorithms could identify cohabitating couples with 86 percent accuracy based on skin microbiomes alone, the researchers report this week in mSystems, an open-access journal of the American Society for Microbiology.

However, the researchers also reported that cohabitation is likely less influential on a person's microbial profile than other factors like biological sex and what part of the body is being studied. In addition, the microbial profile from a person's body usually looks more like their own microbiome than like that of their significant other. "You look like yourself more than you look like your partner," says Ashley Ross, who led the study while a graduate student in the lab of Josh Neufeld.

Neufeld and Ross, together with Andrew Doxey, analyzed 330 skin swabs collected from 17 sites on the participants, all of whom were heterosexual and lived in the Waterloo region. Participants self-collected samples with swabs, and sites included the upper eyelids, outer nostrils, inner nostrils, armpits, torso, back, navel, and palms of hands. Neufeld says the study is the first to identify regions of skin with the most similar microbiomes between partners. They found the strongest similarities on partners' feet. "In hindsight, it makes sense," says Neufeld. "You shower and walk on the same floor barefoot. This process likely serves as a form of microbial exchange with your partner, and also with your home itself." 

The analyses revealed stronger correlations in some sites than in others. For example, microbial communities on the inner thigh were more similar among people of the same biological sex than between cohabiting partners. Computer algorithms could differentiate between men and women with 100 percent accuracy by analyzing inner thigh samples alone, suggesting that a person's biological sex can be determined based on that region, but not others. The researchers also found that the microbial profiles of sites on a person's left side -- like hands, eyelids, armpits, or nostrils -- strongly resemble those on their right side. Of all the swab sites, the least microbial diversity was found on either side of the outer nose[Original study.]

Image result for pills wikipedia All of us at some point or another have wondered if we can hold on to medicines past their expiration date, or do we need to throw them out? And if they're still good past the expiration date, how much past the expiration date? Well... the investigative journalism site ProPublica has been examining this issue, and they published an article saying researchers and the government find that many medicines may be good for YEARS past the expiration date. Yes - years!

According to people interviewed for the article, there are no documented cases of negative effects from taking expired drugs. However, while most medicines are fairly stable and last past the expiration date (they mention the exception of liquid medicines, the asthma inhalant albuterol, the topical rash spray diphenhydramine, and a local anesthetic made from lidocaine and epinephrine). Not mentioned, but there is also another one that degrades and can cause health problems such as Fanconi Syndrome: tetracycline. But other than those, it looks like many medicines are incredibly stable past the expiration date - especially when stored properly and in the original sealed containers. Do go read the whole article - it's eye-opening. Including the government's "Shelf Life Extension Program". Excerpts from ProPublica:

The Myth of Drug Expiration Dates

The box of prescription drugs had been forgotten in a back closet of a retail pharmacy for so long that some of the pills predated the 1969 moon landing. Most were 30 to 40 years past their expiration dates — possibly toxic, probably worthless. But to Lee Cantrell, who helps run the California Poison Control System, the cache was an opportunity to answer an enduring question about the actual shelf life of drugs: Could these drugs from the bell-bottom era still be potent?

Gerona and Cantrell, a pharmacist and toxicologist, knew that the term “expiration date” was a misnomer. The dates on drug labels are simply the point up to which the Food and Drug Administration and pharmaceutical companies guarantee their effectiveness, typically at two or three years. But the dates don’t necessarily mean they’re ineffective immediately after they “expire” — just that there’s no incentive for drugmakers to study whether they could still be usable.

What if the system is destroying drugs that are technically “expired” but could still be safely used? In his lab, Gerona ran tests on the decades-old drugs, including some now defunct brands such as the diet pills Obocell (once pitched to doctors with a portly figurine called “Mr. Obocell”) and Bamadex. Overall, the bottles contained 14 different compounds, including antihistamines, pain relievers and stimulants. All the drugs tested were in their original sealed containers. The findings surprised both researchers: A dozen of the 14 compounds were still as potent as they were when they were manufactured, some at almost 100 percent of their labeled concentrations. “Lo and behold,” Cantrell says, “The active ingredients are pretty darn stable.”

....That raises an even bigger question: If some drugs remain effective well beyond the date on their labels, why hasn’t there been a push to extend their expiration dates? It turns out that the FDA, the agency that helps set the dates, has long known the shelf life of some drugs can be extended, sometimes by years. For decades, the federal government has stockpiled massive stashes of medication, antidotes and vaccines in secure locations throughout the country. The drugs are worth tens of billions of dollars and would provide a first line of defense in case of a large-scale emergency.

Maintaining these stockpiles is expensive. The drugs have to be kept secure and at the proper humidity and temperature so they don’t degrade. Luckily, the country has rarely needed to tap into many of the drugs, but this means they often reach their expiration dates. Though the government requires pharmacies to throw away expired drugs, it doesn’t always follow these instructions itself. Instead, for more than 30 years, it has pulled some medicines and tested their quality.

Once a drug is launched, the makers run tests to ensure it continues to be effective up to its labeled expiration date. Since they are not required to check beyond it, most don’t, largely because regulations make it expensive and time-consuming for manufacturers to extend expiration dates, says Yan Wu, an analytical chemist who is part of a focus group at the American Association of Pharmaceutical Scientists that looks at the long-term stability of drugs. Most companies, she says, would rather sell new drugs and develop additional products. Pharmacists and researchers say there is no economic “win” for drug companies to investigate further. They ring up more sales when medications are tossed as “expired” by hospitals, retail pharmacies and consumers despite retaining their safety and effectiveness.

That being said, it’s an open secret among medical professionals that many drugs maintain their ability to combat ailments well after their labels say they don’t.....In 1986, the Air Force, hoping to save on replacement costs, asked the FDA if certain drugs’ expiration dates could be extended. In response, the FDA and Defense Department created the Shelf Life Extension Program. Each year, drugs from the stockpiles are selected based on their value and pending expiration and analyzed in batches to determine whether their end dates could be safely extended. For several decades, the program has found that the actual shelf life of many drugs is well beyond the original expiration dates.

2006 study of 122 drugs tested by the program showed that two-thirds of the expired medications were stable every time a lot was tested. Each of them had their expiration dates extended, on average, by more than four years, according to research published in the Journal of Pharmaceutical Sciences. Some that failed to hold their potency include the common asthma inhalant albuterol, the topical rash spray diphenhydramine, and a local anesthetic made from lidocaine and epinephrine, the study said. But neither Cantrell nor Dr. Cathleen Clancy, associate medical director of National Capital Poison Center, a nonprofit organization affiliated with the George Washington University Medical Center, had heard of anyone being harmed by any expired drugs. Cantrell says there has been no recorded instance of such harm in medical literature.

 The use of nanoparticles in foods is increasing every year, but we still know very little about whether they have health risks to humans, especially if one is eating foods with them daily (thus having chronic exposure). The nanoparticles in foods are ingredients so small that they are measured in nanometers or billionths of one meter. The most common nanoingredients are: titanium dioxidesilicon dioxide, and zinc oxide.

Titanium dioxide is typically used as a "food coloring" to make foods whiter or brighter, but it may or may not be listed on the label. In Europe, this food additive is known as E171. Currently there are no restrictions on using titanium diaoxide nanoparticles in food.

Recent search suggests that there may be health effects from the nanoparticles in our food (here and here), thus we should be cautious. Evidence is accumulating that titanium dioxide nanoparticles can have a negative inflammatory effect on the intestinal lining.

Similarly, a new study  looking at both mice and humans suggests that individuals with inflammatory intestinal conditions such as intestinal bowel disease (colitis and Crohn's disease) might have negative health effects from titanium dioxide nanoparticles - that they could worsen intestinal inflammation. Interestingly, the nanoparticles accumulated in spleens of mice used in the study. The researchers also found that levels of titanium were increased in the blood of patients with active colitis. From Science Daily:

Titanium dioxide nanoparticles can exacerbate colitis

Titanium dioxide, one of the most-produced nanoparticles worldwide, is being used increasingly in foodstuffs. When intestinal cells absorb titanium dioxide particles, this leads to increased inflammation and damage to the intestinal mucosa in mice with colitis. Researchers at the University of Zurich recommend that patients with colitis should avoid food containing titanium dioxide particles. The frequency of inflammatory bowel disease like Crohn's disease and ulcerative colitis has been on the rise in many Western countries for decades.... In addition to genetic factors, environmental factors like the Western lifestyle, especially nutrition, play an essential role in the development of these chronic intestinal diseases.

The research of Gerhard Rogler, professor of gastroenterology and hepatology at the University of Zurich, now shows that titanium dioxide nanoparticles can intensify the inflammatory reaction in the bodies of patients with inflammatory intestinal diseases. Titanium dioxide is a white pigment used in medicines, cosmetics and toothpaste and increasingly as food additive E171, for example, in icing, chewing gum or marshmallows. Until now, there have been no restrictions on its use in the food industry.

The scientists led by Gerhard Rogler concentrated their research on a protein complex inside cells: the NLRP3 inflammasome. This protein complex is part of the non-specific immune system, which detects danger signals and then triggers inflammation. If the inflammasome is activated by bacterial components, for example, and the inflammatory reaction plays a vital role in the defense against infective agents. In the same way, NLRP3 can be activated by small inorganic particles -- sometimes with negative consequences: If uric acid crystals form in the cells, for example the inflammation leads to gout.

The research team first studied the effect of inorganic titanium dioxide particles in cell cultures. They were able to show that titanium dioxide can penetrate human intestinal epithelial cells and macrophages and accumulate there. The nanoparticles were detected as danger signals by inflammasomes, which triggered the production of inflammatory messengers. In addition, patients with ulcerative colitis, whose intestinal barrier is disrupted, have an increased concentration of titanium dioxide in their blood. "This shows that these particles can be absorbed from food under certain disease conditions," Rogler says.

In a further step, the scientists orally administered titanium dioxide nanoparticles to mice, which serve as a disease model for inflammatory bowel disease. Here, as well, the particles activated the NLRP3 complex, which led to strong intestinal inflammation and greater damage to the intestinal mucosa in the mice. In addition, titanium dioxide crystals accumulated in the animals' spleens. Whether these findings will be confirmed in humans must now be determined in further studies. "Based on our results," Rogler concludes, "patients with an intestinal barrier dysfunction as found in colitis should abstain from foods containing titanium dioxide."  [Original study.]

Image result for moldy wallpaper How many people know this? That wallpaper could have fungi (mold) living on it, and this fungi can release toxins (mycotoxins) that can pollute the air and sicken people when people inhale the toxins. The releasing of toxins from the fungi (mold) into the air is called aerosolization - and when this indoor air pollution causes people  living or working in the building to become sick, it is called sick building syndrome. This study looked at 3 common indoor fungal species: Penicillium brevicompactum, Aspergillus versicolor, and Stachybotrys chartarum, and the mycotoxins they produce after growing on wallpaper.

Why does fungi grow on some wallpaper?  The researchers write that: "Many fungi can develop on building material in indoor environments if moisture is high enough". So either high humidity in the home (especially when the weather is hot) or water damage can result in mold growth. It is estimated that in Northern Europe and North America about 20 to 40 % of buildings have visible fungal growth on surfaces. How do the mycotoxins get into the air and move around inside the home? Ordinary living, with people moving around rooms, slamming doors, air drafts from opening windows, and ceiling fans all cause "air velocities" that move around the toxins. Please note that we normally breathe in fungi and bacteria, but inhaling an overload of mycotoxins from moldy wallpaper can sicken a person. From News-Medical:

Fungal toxins from wallpaper source of illness says new research

According to a new study, there are several toxins from fungi that could be released into the air indoors and the source could be fungi living in the wall papers. These may lead to serious health problems say researchers. These ordinary fungi that live with the household wallpaper are basically of three types found the study researchers. They can grow and eventually spread to the air. This leads to serious health consequences. These effects of transmission of the airborne fungi and their toxins on human health have not been studied or considered with importance till date say researchers.

The toxins released from the fungi are called mycotoxins. They can pollute the indoor air and lead to indoor air pollution – a condition called sick building syndrome. Sick building syndrome is a condition where the residents start to feel ill according to the time they have spent in a building.... Study co-author Jean-Denis Bailly, a professor of food hygiene at the National Veterinary School of Toulouse in France in a statement explained that these mycotoxins are released from moldy material of growth of the fungi. They are eventually inhaled by the inhabitants of the home. While investigating the quality of air indoors especially at homes that have higher fungal contamination, the indoor air quality also needs to be tested for fungal toxins, he explained.

According to researchers, there has been extensive study of fungal contamination of food. However there has been little work in terms of fungal toxins in air. For this study they looked at three fungi that commonly also contaminated foods - Penicillium brevicompactum, Aspergillus versicolor and Stachybotrys chartarum. A piece of wallpaper was found to be contaminated with these three fungi. A flowing stream of air was allowed over the wallpaper and samples of air of the room were then collected for testing.

On analysis of the indoor air the researchers found that the small particles of dust floating around in the house which could then be inhaled easily, contained toxins from these fungi. Also all fungi did not spread the toxins at the same rates they found. Some spread more toxins than others and this could help researchers to decide on which fungi species to concentrate on in terms of disease prevention they said.

Another study was just published with worrisome findings about phthalates. Phthalates are a group of chemicals used widely in common consumer products such as food packaging, toys, medical devices, medications, and personal care products. They are endocrine disruptors (can interfere with normal hormonal function) and are linked to a number of health problems (here, here, and here).

The study looked at urban Australian men and found that the higher the level of phthalates, the higher the rate of cardiovascular disease, type-2 diabetes, and hypertension. The researchers also found that higher levels of chronic low-grade inflammatory biomarkers (meaning higher levels of low-grade inflammation) was associated with higher levels of phthalates. All these findings confirm what other studies, done in other countries, have found.

Phthalates, which are measured in the urine,  were detected in 99.96% of the 1504 men. Eating a western dietary pattern (fast food, highly processed, low fiber) was also associated with higher phthalate levels.  However, they did not find an association of phthalate levels with asthma and depression. From Science Daily:

Everyday chemicals linked to chronic disease in men

Chemicals found in everyday plastics materials are linked to cardiovascular disease, type-2 diabetes and high blood pressure in men, according to Australian researchers. Researchers from the University of Adelaide and the South Australian Health and Medical Research Institute (SAHMRI) investigated the independent association between chronic diseases among men and concentrations of potentially harmful chemicals known as phthalates.

Phthalates are a group of chemicals widely used in common consumer products, such as food packaging and wrappings, toys, medications, and even medical devices. Researchers found that of the 1500 Australian men tested, phthalates were detected in urine samples of 99.6% of those aged 35 and over. "We found that the prevalence of cardiovascular disease, type-2 diabetes and high blood pressure increased among those men with higher total phthalate levels," says senior author Associate Professor Zumin Shi, from the University of Adelaide's Adelaide Medical School and the Freemasons Foundation Centre for Men's Health, and a member of SAHMRI's Nutrition & Metabolism theme.

"While we still don't understand the exact reasons why phthalates are independently linked to disease, we do know the chemicals impact on the human endocrine system, which controls hormone release that regulate the body's growth, metabolism, and sexual development and function. "In addition to chronic diseases, higher phthalate levels were associated with increased levels of a range of inflammatory biomarkers in the body," he says.

Age and western diets are directly associated with higher concentrations of phthalates. Previous studies have shown that men who ate less fresh fruit and vegetables and more processed and packaged foods, and drank carbonated soft drinks, have higher levels of phthalates in their urine.... Associate Professor Shi says that although the studies were conducted in men, the findings are also likely to be relevant to women. "While further research is required, reducing environmental phthalates exposure where possible, along with the adoption of healthier lifestyles, may help to reduce the risk of chronic disease," he says. [Original study.]

 Image result for red meat, wikipedia Red meat allergies from a lone star tick bite? I first read about this a few years ago in Science Daily and it seemed pretty incredible - eat some red meat (beef, pork, or venison) and a few hours later have severe allergy symptoms such as itching, hives, swelling, shortness of breath, vomiting, and diarrhea. And the allergy starts after a person is bitten by a lone star tick.

A few years ago the red meat allergy seemed to occur only in the southeastern United States. But recently the severe red meat allergies are occurring in new places (such as Minnesota and Long island, NY) - so it appears that either the area where this tick lives is spreading or other species of ticks are also now causing this allergy.

By the way, once a person has this allergy there is no cure, vaccine, or treatment other than avoiding red meat, treating the allergy symptoms, and carrying an EpiPen (just in case). It is also referred to as Alpha-Gal allergy syndrome because the allergy is to the sugar molecule commonly called alpha-gal which is found in red meat and some medications (such as the cancer drug cetuximab).

From Wired: OH, LOVELY: THE TICK THAT GIVES PEOPLE MEAT ALLERGIES IS SPREADING

First comes the unscratchable itching, and the angry blossoming of hives. Then stomach cramping, and—for the unluckiest few—difficulty breathing, passing out, and even death. In the last decade and a half, thousands of previously protein-loving Americans have developed a dangerous allergy to meat. And they all have one thing in common: the lone star tick. ...continue reading "Red Meat Allergies From A Tick Bite?"

Once again several studies found health benefits associated with drinking coffee daily - this time "reduced risk of death" in 2 studies, and in one study a reduced risk of gallbladder cancer.

Just keep in mind that the studies found associations, but did not establish that drinking coffee caused X (reduced risk of death) - so perhaps coffee drinkers differ in some still unknown way from non-coffee drinkers. But...so many studies are piling up showing an association with health benefits that it looks likely that it is actually the coffee causing the benefits. Both decaffeinated and regular coffee seem beneficial, and it doesn't matter how it is prepared (e.g., espresso, drip, cappuccino). (Earlier posts about coffee - here, here, here)

In the one study higher consumption of coffee was associated with a lower risk of death from heart disease, cancer, stroke, diabetes, and kidney disease in African Americans, Japanese Americans, Latinos, and whites. People who consumed a cup of coffee a day (decaffeinated or regular) were 12 percent less likely to die compared to those who didn't drink coffee, and those who drank two to three cups a day had an 18 percent reduced chance of death.

The conclusion of the other study of over half million adults in 10 European countries was similar: coffee drinking was associated with lower risk for death from "all causes", especially from circulatory diseases and diseases related to the digestive tract. This association held up among all the countries. The highest levels of consumption  group (3 cups or more of coffee per day)  had the lowest risk of death - as compared to those drinking none or less than 1 cup of coffee per day. However, the one negative result from drinking more than 3 cups of coffee daily was an increase in risk for ovarian cancer mortality in women (but only when compared to coffee non-drinkers).

From STAT News: Drink coffee? It won’t hurt you, and may reduce your risk of an early death

Good news, coffee drinkers: A couple of massive new studies that looked at hundreds of thousands of people for about 16 years finds that a few cups of coffee a day won’t hurt you and could lower your risk of dying prematurely. The studies reinforce previous findings that drinking an 8-ounce cup of joe (or three) won’t hurt you, but the authors of the new works and other experts say caveats abound.

Murphy told STAT his is the largest study on coffee and mortality to date. In the study, researchers with the WHO’s International Agency for Research on Cancer and Imperial College London tracked 521,000 adults from 10 European countries who self-reported their coffee consumption over an average of 16 years.... In investigating more than 40,000 deaths from this group, the team found that participants who fell into the highest 25 percent of coffee consumers had a lower risk of death due to any cause compared to non-coffee drinkers. They saw a reduced risk of early death by diseases related to the digestive and circulatory systems. The researchers also discovered a link between higher coffee consumption and lower risk of early death by lung cancer in men. And they also looked at suicide — completed suicides were lower for coffee drinkers, but only in men. [Original study.]

In a second study of 180,000 people tracked for an average of 16 years, University of Southern California investigators found drinking one to six cups of coffee per week led to a decreased risk of early death. The study was focused on non-white populations, andtheir findings proved consistent for coffee drinkers across racial and ethnic groups. One of the USC study’s senior authors, V. Wendy Setiawan... said coffee consumption may be linked a lower risk of early death for people with heart disease, cancer, chronic lower respiratory disease, stroke, and kidney disease.Drink one cup per day, and the risk of dying early from those diseases decreases by 12 percent, she said. [Original study.]

This 2016 study is from Medscape: Coffee Consumption and Risk of Gallbladder Cancer in a Prospective Study

Evidence indicates that coffee consumption may reduce the risk of gallstone diseasewhich is strongly associated with increased risk of gallbladder cancer. The association between coffee consumption and gallbladder cancer incidence was examined in a prospective cohort study of 72,680 Swedish adults (aged 45 − 83 years) who were free of cancer and reported their coffee consumption at baseline.....  In conclusion, coffee consumption was observed to be associated with a reduced risk of gallbladder cancer. A potential protective association between coffee consumption and risk of gallbladder cancer may be mediated via reduced gallstone formation or through other mechanisms such as reduction of oxidative damage and inflammation and regulation of DNA repair, phase II enzymatic activity, apoptosis, angiogenesis, and metastasis.

Lately more and more research has been finding health benefits with frequent consumption of extra virgin olive oil (EVOO). It is also a basic part of the popular Mediterranean diet - which emphasizes fresh fruits and vegetables, nuts, legumes (beans), whole grains, some fish, and extra virgin olive oil. Now a study conducted by investigators at Temple University in Philadelphia, Pennsylvania, suggests that the olive oil in the Mediterranean diet probably promotes healthy brain aging. The researchers said: "Our study is the first demonstration that EVOO can beneficially affect memory, amyloid plaques, and tau pathology, the hallmark lesions in the brain of Alzheimer's patients."

But... note that they are taking findings from their study done on mice and hypothesizing that this is what is also going on in humans.  Their study used specially bred mice (and only 22 in total) - one group which received extra virgin olive oil in their food (starting at 6 months of age), and the other not. The researchers found that after a few months of this diet that there were differences between the 2 groups when tested at 12 months (which is also when they were euthanized). Note that mice are short lived and after 6 months they are considered "mature adults".

The researchgers now plan to test varying daily doses of EVOO on humans soon - this way they can see what the minimal dosage is for beneficial effects (if any), and if there is a maximal dosage where there are negative health effects. In the meantime, enjoy olive oil in your diet - looks like it will benefit your health in a number of ways (herehere, and here). From Medscape:

Olive Oil Key Ingredient in Alzheimer's Prevention?

Extra-virgin olive oil (EVOO) appears to protect memory and learning ability and reduces the formation of beta amyloid (Aβ) plaques and neurofibrillary tangles in the brain — the classic hallmarks of Alzheimer's disease (AD) — new animal research shows. The study, conducted by investigators at Temple University in Philadelphia, Pennsylvania, suggests that it is the olive oil component of the Mediterranean diet that likely promotes healthy brain aging.... "And results are important enough to absolutely encourage people to consume greater amounts of EVOO. Given that it's been consumed for at least 2000 years, I do not anticipate any side effects," he added.  ...continue reading "Is Olive Oil Good For The Aging Brain?"

The following is a study with weird results, really weird results. And it makes me think of all the times I've heard people joke: "just smelling food makes me gain weight", because we all knew it wasn't true. But what if it was true? .... The results of this study done in mice are that actually smelling the food one eats results in weight gain, and not being able to smell the food results in weight loss - even if both groups eat the same amount of food. And the "supersmellers" (those with a "boosted" sense of smell) gained the most weight of all.

What? How could that be? Yes, the study was done in mice, but perhaps it also applies to humans (the researchers think so). The researchers think  that the odor of what we eat may play an important role in how the body deals with calories - if you can't smell your food, you may burn it rather than store it. In other words, a link between smell and metabolism. Excerpts from Science Daily:

Smelling your food makes you fat

Our sense of smell is key to the enjoyment of food, so it may be no surprise that in experiments at the University of California, Berkeley, obese mice who lost their sense of smell also lost weight. What's weird, however, is that these slimmed-down but smell-deficient mice ate the same amount of fatty food as mice that retained their sense of smell and ballooned to twice their normal weight. In addition, mice with a boosted sense of smell—super-smellers—got even fatter on a high-fat diet than did mice with normal smell.  ...continue reading "Lose Weight If You Can’t Smell Your Food?"