Skip to content

This is so sad, but it's the new reality in the USA. Less discussed, but also problematic is the increase in early puberty in boys.The research as to causes is ongoing, but increasingly our exposure to chemicals, especially endocrine disruptors is suspected to be a cause. What to do? Once again: try to reduce exposure to plastics (ha!) by buying and storing food in glass containers, and do not microwave food in plastic containers. Avoid fragrances or perfumed products. From Newsweek:

Puberty Comes Earlier and Earlier for Girls

At age 6, Rebecca’s body began to develop in ways that seemed unusual. Her mother, Ellen, had noticed a change in Rebecca’s breast area...But there was also the hair that had begun to appear under her daughter’s arms. When a test showed Rebecca’s bone age to be 10½, a pediatric endocrinologist diagnosed “precocious puberty.” While the exact cause is unknown, this endocrine disorder is triggered by the early release of hormones in the brain, a circumstance that hurls a child into sexual maturation years before the usual age.

This sudden sexual development in a child so young can be unnerving to parents. “My daughter is 7 years and 10 months old. She started having body odor at 5 and breast buds at 6,” one mother wrote recently in a group chat about the condition. She wrote, too, of her daughter’s “roller-coaster emotions,” a common complaint from parents observing massive mood swings, PMS-like symptoms and other “teen emotions” in daughters just beginning the first grade—and in some cases even younger. The condition affects individuals in different ways. ”...Unlike Rebecca, many precocious kids lose their interest in Disney and little-girl things and begin to act, well, the age of their bodies.

In girls, puberty is commonly defined as breast development, growth of pubic hair and menarche, the beginning of the menstrual cycle. At the turn of the 20th century, the average age for an American girl to get her period was 16 to 17. Today, that number has plummeted to less than 13, according to data from the National Health and Nutrition Examination Survey. The trend has been attributed to the epidemic of overweight children and a greater exposure to pollution, which does bad things to developing bodies and accelerates the timing of a girl’s first menstruation.

Environmental toxins also cause many girls to develop breasts at an earlier age than in the past. Compared with 20 years ago, American girls today begin developing breasts anywhere from one month to four months earlier, a significant difference. At the same time, the number of girls who begin to develop early is increasing. “Just a generation ago, less than five percent of girls started puberty before the age of 8; today that percentage has more than doubled,” note Dr. Louise Greenspan and Dr. Julianna Deardorff in The New Puberty: How to Navigate Early Development in Today’s Girls.

Among the toxins causing this trend, the biggest offenders are plastic compounds, in particular phthalates, man-made chemicals found all over the place: in plastic food and beverage containers, carpeting, shampoos, insect repellents, vinyl flooring, shower curtains, plastic toys and in the steering wheels and dashboards of most cars. Our bodies cannot metabolize phthalates, which interfere with the endocrine systemthe body’s system of glands and hormones—and harm fat cells. Indirectly, phthalates may cause weight gain and so influence the timing of puberty

Our children are living in a “sea of chemicals,” says Dr. Marcia E. Herman-Giddens, a professor of public health at the University of North Carolina. She argues that children are speeding into puberty before they’re ready, and that this early maturation is both the symptom of bodily damage that has already occurred and the probable cause of health consequences they may expect in the future.

Along with higher rates of depression, younger girls who enter puberty earlier than their peers are more prone to obesity and drug abuse...Meanwhile, no matter how physically developed a girl is, her psychosocial maturation remains anchored to her chronological age. 

“Puberty is considered one of those windows of susceptibility,” says Biro, when the body is especially sensitive to the negative health impact of social and environmental stressors. In particular, the actively maturing breast tissue of a girl, unlike the breast tissue of a full-grown woman, is more vulnerable to damaging environmental pollutants.

Today’s girl is both starting puberty earlier and going through it more slowly, according to Biro, which means a girl remains in this high-risk state for a longer amount of time. In an article he co-authored with Deardorff and others, Biro found up to a 30 percent increased risk for breast cancer when a woman experiences her first period at a younger age. And “for each year that age of menarche was delayed, the risk of premenopausal breast cancer was reduced by 9 percent, and risk of postmenopausal breast cancer was reduced by 4 percent.

Early breast development also opens the door to reproductive tract cancers, says Herman-Giddens, since “if you’re starting to develop breasts, your body is making estrogen.” Estrogen, especially when combined with stress hormones, is a known cancer-causing agent. Having had an earlier start to puberty, an early-maturing girl produces more estrogen over the years and so elevates her lifetime risk of reproductive cancers.

There is a medical solution for patients who, like 6-year-old Rebecca, are diagnosed with precocious puberty. Hormone treatments can essentially halt the process of sexual maturation. Then, at an appropriate age, the drugs are withdrawn and puberty plays out.Some girls diagnosed with precocious puberty have no choice but to medicate in order to prevent serious bone and growth problems

The evidence keeps growing of health effects with BPA exposure, especially during pregnancy and childhood. To minimize BPA exposure try to use glass instead of plastic. Try to drink from and store liquids in glass containers, and do not microwave food in plastic dishes. From Medical Daily:

BPA Disrupts Sperm Production In Mice, Could Be Linked To Decreased Fertility In Men

BPA, or bisphenol A, is a chemical component of plastic that is often found in plastic food containers, plastic bottles, and thermal receipts. Now, a new study shows a direct link between this chemical and disrupted sperm production in mice. BPA disrupts the delicate DNA interactions needed to create sperm, say the Washington State University researchers.

Sperm counts have declined over the past few decades worldwide, scientists warn. In Denmark, more than 40 percent of young men have sperm counts in the infertility or decreased fertility range. Reports from other European countries, Japan, and the United States all tell the same story. Sperm counts, though, may be only the tip of the iceberg. Studies also document an increase in abnormalities of male reproductive organs, including undescended testicles, hypospadias (when the urethra opening is misplaced on the penis), and increased incidence of testicular cancer — a constellation of male disorders referred to as testicular dysgenesis syndrome. This syndrome is thought to result from exposure, during early development, to estrogens. BPA is an endocrine disrupting chemical with estrogenic activity. Could descending sperm counts and testicular dysgenesis syndrome be linked to early exposures to this chemical?

Hunt and her colleagues gave newborn male mice oral doses of BPA. They also exposed another group of mice to the synthetic estrogen, ethinyl estradiol, which is used in many formulations of hormonal contraceptives (such as birth control pills). They also exposed another group of mice to a placebo. ..The team discovered that the sperm of BPA exposed mice did a poorer job of meiosis, the process by which cells combine the genetic information of their parents. As a result, more sperm died."We have a window of just a few days and we permanently change the way that the testis makes sperm in the adult," says Hunt.Hunt worries that sperm counts will continue to go down with each exposed generation. 

Same study, but this write-up has more background. From Environmental Health News:

BPA exposure linked to changes in stem cells, lower sperm production

The study, published online today in PLoS Genetics, is the first to suggest that low, brief exposures to bisphenol-A, or other estrogens such as those used in birth control but found as water contaminants, early in life can alter the stem cells responsible for producing sperm later in life...These exposures – comparable to human exposures to the compounds -- caused “permanent alterations” to the stem cells responsible for sperm production, the authors wrote.

Nice write-up of how what happens from the type of birth (vaginal vs cesarean) affects the baby's microbiome (community of microbes). Remember, it is very complicated and much is still unknown. (UPDATE: see January 16, 2015 post discussing research by Dr. Dominguez-Bello who is conducting a study in which babies born via C-section are immediately swabbed with their mother's vaginal secretions; these babies will then be followed for years). From Gastroenterology and Endoscopy News:

Delivery Mode Alters Newborn’s First Bacterial Exposure

 A baby’s first exposure to bacteria varies by the method of delivery, researchers have found. These differences could have health implications later in life, according to an emerging body of evidence that suggests gut bacteria may be important to the development of a healthy immune system (Arrieta MC et al.Front Immunol 2014;5:427). For example, evidence shows that alterations in gut bacteria early in life may increase the incidence of allergies later on (Bendiks M, Kopp MV. Curr Allergy Asthma Rep 2013;13:487-494).

In the new study, presented at the 2014 annual meeting of the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition, a group at the University of Colorado School of Medicine, in Aurora, compared oropharyngeal aspirates taken from 12 infants born by cesarean delivery and 11 born vaginally, and their bacterial content by sequencing the bacterial genes in the samples (abstract 7). Samples taken from the mothers’ vaginal and rectal areas, and samples of the infants’ stool, were also analyzed for bacterial genes.

Bacteria in aspirates from newborns delivered vaginally were more similar to the bacteria found in samples from their mothers than the aspirates from infants born by cesarean delivery, the investigators found. Infants born vaginally had higher numbers of firmicutes (62.6% vs. 30.1%; P=0.0013), particularly lactobacilli typically found in the vagina.

Aspirates from infants born by cesarean delivery, in contrast, had higher levels of Actinobacteria (20.1% vs. 3.8%; P=0.045), which are found on the skin. Stool samples from vaginally delivered newborns also had greater numbers of Bacteroidetes than stool samples from infants born by cesarean delivery. This difference persisted through six weeks of life, the researchers said.

David Brumbaugh, MD, assistant professor of pediatrics at the University of Colorado School of Medicine, in Aurora, said the finding of fewer Bacteroidetes in cesarean newborns is potentially alarming. Studies of mice raised in sterile conditions have shown that exposure to a specific type of Bacteroidetes, Bacteroides fragilis, suppresses the animals’ inflammatory response (Mazmanian SK et al. Nature 2008;453:620-625), he said. 

“The fact that this bacteria never gets established early in life [in babies born by cesarean delivery] is concerning,” he said. Some studies have suggested that infants born by cesarean delivery may be at greater risk for developing conditions such as asthma, type 1 diabetes and celiac disease (Cho CE, Norman M. Am J Obstet Gynecol 2013;208:249-254). But not all studies have supported such risks; other studies suggest that genetic factors or the reason for the cesarean delivery itself may contribute to disease later in the child’s life (Almqvist C et al.Clin Exp Allergy 2012;42:1369-1376).

Jean-Eric Ghia, PhD, assistant professor of immunology and internal medicine at the University of Manitoba, in Winnipeg, Canada, said the findings add to a body of evidence suggesting that gut bacterial colonization is affected by mode of delivery, and these altered gut bacteria might contribute to immune system–related disease later in life (Neu J, Rushing J.Clin Perinatol 2011;38:321-331). “The first colonization of the gut happens when the baby comes out,” he said. But he noted that long-term studies are needed to assess the effect of these gut differences on health in the long term. He noted that a multitude of exposures before and after birth can also influence gut biota (Munyaka PM et al. Front Pediatr. doi:10.3389/fped.2014.00109 [published online October 9, 2014]). “It’s really, really complicated,” he said.

And the scary part is that they only tested for 32 chemicals, but there are thousands of others they didn't test for that could be lurking in the water, including pesticides used on the lawns and grounds around outdoor swimming pools. From Science Daily:

Pharmaceuticals, personal care products could taint swimming pools

A new study suggests pharmaceuticals and chemicals from personal care products end up in swimming pools, possibly interacting with chlorine to produce disinfection byproducts with unknown properties and health effects.

Chlorination is used primarily to prevent pathogenic microorganisms from growing. Previous research has shown that many constituents of urine including urea, uric acid, and amino acids, interact with chlorine to produce potentially hazardous disinfection byproducts in swimming pools. However, chemicals from pharmaceuticals and personal care products, or PPCPs, also could be interacting with chlorine, producing potentially harmful byproducts. There are literally thousands of chemicals from pharmaceuticals and personal care products that could be getting into swimming pool water.

A research group led by Ching-Hua Huang, a professor in the School of Civil and Environmental Engineering at the Georgia Institute of Technology, has developed an analytical technique that identifies and quantifies 32 pharmaceuticals and personal care products in water... Water samples were taken from indoor swimming pools in Indiana and Georgia.

Of the 32 chemicals investigated, the researchers detected three: N,N-diethyl-m-toluamide, known as DEET, the active ingredient in insect repellants; caffeine; and tri(2-chloroethyl)-phosphate (TCEP), a flame retardant.

"The other 29 could have been present at concentrations below the detection level," Blatchley said. "And because there are literally thousands of pharmaceuticals, this is just a small subset of compounds that could be present in swimming pools. The main issue is that the release of chemicals into a place like a swimming pool is completely uncontrolled and unknown. I don't want to be an alarmist. We haven't discovered anything that would be cause for alarm right now, but the bottom line is we just don't know."

Some chemicals are volatile, which means they can escape into the air to be inhaled. Others can be ingested or absorbed through the skin."Swimmers are exposed to chemicals through three different routes: You can inhale, you can ingest and it can go through your skin. So the exposure you receive in a swimming pool setting is potentially much more extensive than the exposure you would receive by just one route alone," Blatchley said.

His previous research has shown that certain airborne contaminants are created when chlorine reacts with sweat and urine in indoor swimming pools. Pharmaceuticals may get into swimming pool water from personal care products applied to the skin such as insect repellant, makeup and sunscreen. Many pharmaceuticals that are ingested are not fully metabolized by the body and are excreted in sweat and urine.

"Urine, I think, is really the primary mode of introduction," Blatchley said. "When it comes to pharmaceuticals, these are chemicals designed to be biologically active at pretty low concentrations. Birth control pills, for example, contain hormones. If those chemicals and others are present, especially in a mixture in a water sample that humans are going to be exposed to, then what are the consequences of that? That is a largely unanswered question."...The previous research suggested that about 93 percent of uric acid introduced to pools comes from human urine.

Once again air pollution is linked to health problems, this time exposure during pregnancy is linked to congenital malformations (what are commonly called birth defects). From Science Daily:

Smoke signals: New evidence links air pollution to congenital defects

The health effects of air pollution are a major concern for urban populations all over the world. A new study provides new evidence linking high exposure to air pollution to an increased risk of congenital malformations. Children, the elderly, and people with impaired respiratory systems (such as asthmatics) tend to be especially sensitive to the impact of exposure to ozone, nitrogen dioxide, sulphur dioxide, and particulate matter.

A recent study by Tel Aviv University researchers provides new evidence linking high exposure to air pollution to an increased risk of congenital malformations. The nationwide study is the first to assess the association between different modes of conception-assisted reproductive technology (ART) versus spontaneous conception (SC) -- and the risks of exposure to air pollution to each.

"Our results suggest that exposure to higher levels of air pollution during pregnancy is associated with various adverse pregnancy outcomes," said Prof. Lerner-Geva. "While our study mainly followed SC infants, we also had the opportunity to assess a small sample of pregnancies that were conceived through ART, and observed a higher impact of air pollution -- particularly with regard to ozone exposure. This is clearly a uniquely susceptible population that should be further explored."

For the study, funded by the Environmental Health Fund (EHF), the research team analyzed data on 216,730 born in Israel between 1997 and 2004. Air pollution data, including, levels of sulfur dioxide (SO2), particulate matter (PM10), nitrogen oxides (NOx), and ozone (O3) were obtained from air monitoring stations for the study period. Using a geographic information system, exposure to air pollution during both the first trimester and the entire pregnancy was assessed for each woman according to her place of residence.

The researchers found that exposure to PM10 and NOX pollutants throughout full-term pregnancies were associated with an increased risk of congenital malformations, with specific defects evident in the circulatory system (from PM10 and NOX exposure) and genital organs (from NOX exposure). They also discovered that exposure to SO2 and O3 in ART pregnancies were associated, although not significantly, with a higher risk of congenital defects.

Two studies finding various forms of air pollution having effects on the developing fetus - the first one (fine particulate air pollution) to autism, and the second (outgassing of new flooring) to later breathing problems.

From Medical Xpress: Fine particulate air pollution linked with increased autism risk

Women exposed to high levels of fine particulate matter specifically during pregnancy—particularly during the third trimester—may face up to twice the risk of having a child with autism than mothers living in areas with low particulate matter, according to a new study from Harvard School of Public Health (HSPH). The greater the exposure, the greater the risk, researchers found. It was the first U.S.-wide study exploring the link between airborne particulate matter and autism.

"Our data add additional important support to the hypothesis that maternal exposure to air pollution contributes to the risk of autism spectrum disorders," said Marc Weisskopf, associate professor of environmental and occupational epidemiology and senior author of the study.... Prior studies have suggested that, in addition to genetics, exposure to airborne environmental contaminants, particularly during pregnancy and early life, may affect risk of autism. This study focused specifically on the pregnancy period.

The study population included offspring of participants living in all 50 states in Nurses' Health Study II, a cohort of more than 116,000 female U.S. nurses begun in 1989. The researchers collected data on where participants lived during their pregnancies as well as data from the U.S. Environmental Protection Agency and other sources on levels of fine particulate matter air pollution (PM2.5)—particles 2.5 microns in diameter or smaller—in locations across the U.S. The researchers identified 245 children who were diagnosed with autism spectrum disorder (ASD) and a control group of 1,522 children without ASD during the time period studied.

Exposure to PM2.5 was significantly associated with autism during pregnancy, but not before or after, the study found. And during the pregnancy, the third trimester specifically was significantly associated with an increased risk. Little association was found between air pollution from larger-sized particles (PM10-2.5) and autism.

From Science Daily: New floor covering can lead to breathing problems in babies

New flooring in the living environment of pregnant women significantly increases the risk of infants to suffer from respiratory diseases in their first year of life. This is the result of a study that demonstrates that exposure to volatile organic compounds in the months before and after birth induces breathing problems in early childhood. The scientists therefore recommend that redecoration should be avoided during pregnancy or in the first year of children’s life.

The observed health risks are caused by increased concentrations of volatile organic compounds (in short: VOCs), such as styrene or ethylbenzene, which escape from new flooring and are then absorbed through the respiratory air. "We therefore do not recommend that laminate, carpet or floor coverings be laid in the homes of pregnant women. Although the concentrations of these volatile chemicals are lower if no adhesive is used when installing the flooring, even then the concentrations are still high enough to significantly increase the risk of infants suffering from respiratory complaints in their first few months," explains Dr. Ulrich Franck from the UFZ. 

Earlier studies from Leipzig had already shown that chemicals from home renovations lead to changes in the immune system of new-born children.... According to our results, exposure to these volatile chemical compounds seems to be more critical in pregnancy than in the first year of a child's life," concludes Dr. Irina Lehmann from the UFZ, who is in charge of the LINA study on lifestyle and environmental factors and their influence on the risk of allergies in newborn babies. An analysis of the data showed that renovations after the birth of a child had a much lower impact on respiratory problems than during pregnancy.

Bottom line: view the games as fun and a way to pass some time, but nothing more. From the Atlantic:

The Myth of the Brain Game

Over the past decade, digital brain-training games have emerged as the newest way to sharpen memory skills. They’re often touted as having a wide range of benefits, from helping people remember names and childhood stories to possibly staving off dementia and Alzheimer's disease.

In October, Stanford University’s Center for Longevity and the Max Planck Institute for Human Development in Berlin asked a group of more than 70 neuroscientists, cognitive psychologists, and academics to share their views on these games. “There is little evidence that playing brain games improves underlying broad cognitive abilities, or that it enables one to better navigate a complex realm of everyday life,” the group wrote in a consensus report.

The validity of brain games has been a point of debate ever since the first iterations of them launched in the early 2000s. What’s notable about the Stanford/Max Planck report is its deliberation and scope, offering insight collected over the course of a year from experts based at 40 institutions in six different countries.

The report questions the “pernicious,” “exaggerated,” and “misleading” claims made by brain-game manufacturers and stresses that wide-reaching positive results are “elusive.” The signatories don’t call out any specific types of brain-training software, but their language is often damning. “Many scientists cringe at exuberant advertisements claiming improvements in the speed and efficiency of cognitive processing and dramatic gains in ‘intelligence,’” they write.

Brain training is projected to be a $3 billion industry by 2015. Its target demographic is vast, from kids lagging behind in school to seniors who’d love to be able to remember things more efficiently. Most people, in fact, would appreciate the opportunity to feel like they’re getting the most out of their brains, and when a particular product is advertised as being both educational and backed by science, it can be hard to resist.

That there’s a need for scientists to issue a signed letter like this one only goes to show how popular brain games are and to what extent experts feel the public may have been seduced by the promise that they’re endorsed by science. The letter is both a word of caution to the public and the signatories’ way of distancing themselves from the commercial products. 

In 2013, two researchers at the University of Oslo and University College London conducted a meta-analysis of 23 different brain-training studies. What they saw was what every skeptic has seemed to notice. “Memory training programs appear to produce short-term, specific training effects that do not generalize,” they wrote. That is, training with games helped people get better at the games they were playing, but not much else.

Brain games aren’t a complete waste of time. They provide mental stimulation, the kind that doctors advise the elderly to get from crosswords and other mind games. They are fun, engaging, even competitive. They show how we can train the brain to get better at a task with repeated practice. But these are fairly obvious results given what we know about the brain's plasticity. 

All that said, the things that do help shape a healthy brain are the things that have been tried and tested for years. Physical fitness forces more blood to flow into the brain, allowing for more neural connections. So exercise works, as does conventional training in reading and language skills for children with reading-comprehension and oral language difficulties.

Also helpful are curiosity and engagement with the world around us, and the body’s lifelong subconscious effort to keep the brain active. The report's summary is perhaps the biggest indictment of any pop-a-pill brain-game philosophy. “The promise of a magic bullet detracts from the best evidence to date,” they wrote. “Cognitive health in old age reflects the long-term effects of healthy, engaged lifestyles.”

Children spending time outside (more than 14 hours a week) have lower rates of nearsightedness, even if they spend a lot of time reading. From Science Daily:

Scientists study effects of sunlight to reduce number of nearsighted kids

Kids who spend more time outside are less likely to need glasses for nearsightedness – but scientists don’t know why. Researchers are now looking more closely at physical changes in the eye influenced by outdoor light exposure in the hopes of reducing cases of myopia, which affects one-third of the American population.

Despite what many parents may think, kids who spend a lot of time reading or squinting at tiny electronic screens aren't more likely to become nearsighted than kids who don't. However, that risk is only reduced if the child spends plenty of quality time outside. The "outdoor effect" on nearsightedness, or myopia, is a longstanding observation backed by both scientific and anecdotal evidence. It's so compelling that some nations in Asia, which have among the highest myopia rates in the world, have increased the amount of daily outdoor time for children in the hopes of reducing the need for glasses.

But so far, no one has defined exactly what it is about being outside that seems to offer a protective effect against the condition, which causes distant objects to appear blurry.

"Data suggest that a child who is genetically predisposed to myopia are three times less likely to need glasses if they spend more than 14 hours a week outdoors," says optometrist Donald Mutti, OD, PhD, of The Ohio State University College of Optometry. "But we don't really know what makes outdoor time so special. If we knew, we could change how we approach myopia."

Supported by a pilot grant from Ohio State's Center for Clinical and Translational Science (CCTS), Mutti is now focusing his research on the variables he feels have the most potential: invisible ultraviolet B rays (UVB) and vitamin D, and visible bright light and dopamine."Between the ages of five and nine, a child's eye is still growing. Sometimes this growth causes the distance between the lens and retina to lengthen, leading to nearsightedness," explained Mutti. "We think these different types of outdoor light may help preserve the proper shape and length of the eye during that growth period."

UVB light is invisible to the human eye, but triggers several cellular functions in the body, including the production of vitamin D. Vitamin D is thought to support the function of the smooth muscle tissue found around the lens in the eye. This muscle not only helps focus light on the retina, but may also maintain the proper eye shape and length between the lens and the retina, something that can become distorted during the rapid growth of a child's eye.

Some studies, including one by Mutti, show that people with myopia have lower blood levels of vitamin D -- indicating that they have spent less time outdoors, with possible negative effects on the eye..."We don't know if vitamin D is simply a proxy for measuring outdoor time, or if it is actually exerting a biological effect on how the eye works and develops," said Mutti.

There's another part of sunlight that could help prevent myopia: exposure to visible bright light. Even on a cloudy day, visible light outdoors is at least 10 times brighter than the light indoors.When exposed to outdoor light, specialized cells in the retina help control how big or little the pupil dilates to let more or less light in. The cells connect to others that release dopamine -- an important neurotransmitter in the eye and brain. Previous research suggests that dopamine also slows down the growth of the eye, but there isn't technology currently available that can measure dopamine release in the eye directly.

This research finding of lower IQ in children with higher exposure to 2 common phthalates during pregnancy is very troubling. Especially since avoiding all phthalates in the USA is currently impossible. But one can lower levels in the body by reading all ingredients and trying to avoid certain products (e.g. dryer sheets, vinyl shower curtains, personal care products with phthalates, scented products). And don't microwave food in plastic containers. From Science Daily:

Prenatal exposure to common household chemicals linked with substantial drop in child IQ

Children exposed during pregnancy to elevated levels of two common chemicals found in the home -- di-n-butyl phthalate and di-isobutyl phthalate -- had an IQ score, on average, more than six points lower than children exposed at lower levels, according to researchers.

DnBP and DiBP are found in a wide variety of consumer products, from dryer sheets to vinyl fabrics to personal care products like lipstick, hairspray, and nail polish, even some soaps. Since 2009, several phthalates have been banned from children's toys and other childcare articles in the United States. 

Researchers followed 328 New York City women and their children from low-income communities. They assessed the women's exposure to four phthalates--DnBP, DiBP, di-2-ethylhexyl phthalate, and diethyl phthalate--in the third trimester of pregnancy by measuring levels of the chemicals' metabolites in urine. Children were given IQ tests at age 7.

Children of mothers exposed during pregnancy to the highest 25 percent of concentrations of DnBP and DiBP had IQs 6.6 and 7.6 points lower, respectively, than children of mothers exposed to the lowest 25 percent of concentrations after controlling for factors like maternal IQ, maternal education, and quality of the home environment that are known to influence child IQ scores. The association was also seen for specific aspects of IQ, such as perceptual reasoning, working memory, and processing speed. The researchers found no associations between the other two phthalates and child IQ. The range of phthalate metabolite exposures measured in the mothers was not unusual: it was within what the Centers for Disease Control and Prevention observed in a national sample.

"A six- or seven-point decline in IQ may have substantial consequences for academic achievement and occupational potential.""While there has been some regulation to ban phthalates from toys of young children," adds Dr. Factor-Litvak, "there is no legislation governing exposure during pregnancy, which is likely the most sensitive period for brain development. Indeed, phthalates are not required to be on product labeling."

While avoiding all phthalates in the United States is for now impossible, the researchers recommend that pregnant women take steps to limit exposure by not microwaving food in plastics, avoiding scented products as much as possible, including air fresheners, and dryer sheets, and not using recyclable plastics labeled as 3, 6, or 7.

The findings build on earlier, similar observations by the researchers of associations between prenatal exposure to DnBP and DiBP and children's cognitive and motor development and behavior at age 3. This September, they reported a link between prenatal exposure to phthalates and risk for childhood asthma. It's not known how phthalates affect child health. However, numerous studies show that they disrupt the actions of hormones, including testosterone and thyroid hormone. Inflammation and oxidative stress may also play a role.

Considering all the antibiotics that the typical sinusitis sufferer takes over the years, reading this article was depressing. One wonders, can the gut microbiome (community of microbes) recover from many rounds of antibiotics and how long does it take? Please note: CD is Crohn's disease, UC is ulcerative colitis, and IBD is inflammatory bowel disease. Dysbiosis means that the community of microbes (microbiome) is out-of-whack. From Medscape:

Antibiotics Associated With Increased Risk of New-onset Crohn's Disease but not Ulcerative Colitis

The objective of this study was to perform a meta-analysis investigating antibiotic exposure as a risk factor for developing inflammatory bowel disease (IBD).A literature search using Medline, Embase, and Cochrane databases was performed to identify studies providing data on the association between antibiotic use and newly diagnosed IBD. 

Conclusions: Exposure to antibiotics appears to increase the odds of being newly diagnosed with CD but not UCThis risk is most marked in children diagnosed with CD.

--------------------------------------------------------------------------

Environmental factors have a key role in the pathogenesis of inflammatory bowel disease (IBD)...Furthermore, the incidence of IBD has been increasing worldwide over time. Developing countries have seen an increase in IBD incidence as they have Westernized.

Emerging evidence suggests that certain medications are associated with an increased risk of new-onset IBD. In particular, antibiotics have been linked to the development of both Crohn's disease (CD) and ulcerative colitis (UC).Growing research suggests that the microbiome and its interaction with the mucosal immune system are important in the pathogenesis of IBD.Antibiotics can cause alterations to the microbiome that may potentially contribute to the dysbiosis and dysregulated immune response seen in IBD.

Previous studies have investigated the association of antibiotic exposure with newly diagnosed IBD in both adult and pediatric populations. CD has been more consistently associated with antibiotic use, with some studies demonstrating an increased risk of CD but not UC. It also appears that patients who receive more frequent courses of antibiotics have a higher likelihood of developing IBD.

The results of this meta-analysis suggest that exposure to antibiotics increases the risk of new-onset IBD. When stratifying by type of IBD, antibiotic exposure was associated with an increased risk of developing CD but not UC. We found that the magnitude of risk of new CD is greater for children than for adults. All classes of antibiotics studied, with the exception of penicillins, were associated with new diagnoses of IBD. Interestingly, the types of antibiotics showing the strongest association were fluoroquinolones and metronidazole.

Although it is impossible to draw causal links on the basis of these data, there are some possible implications and explanations for our findings. First, our findings may support the importance of disruptions in the microbiome in the pathogenesis of IBD. The link between antibiotic exposure and new IBD seems biologically plausible. It is known that the microbiome likely has an important role in the pathogenesis of IBD. Studies have shown a decrease in the diversity and stability of both mucosa-associated bacteria and fecal bacteria in patients with CD and UC.For example, the largest cohort microbiome study to date recently found that newly diagnosed CD patients have increased Enterobacteriaceae,Pasteurellaceae, Veillonellaceae, and Fusobacteriaceae, and decreased Erysipelotrichales, Bacteroidales, and Clostridiales.

Antibiotics have been shown to alter the composition of the human gut microbiota by decreasing taxonomic richness and diversity....Although the microbiome may recover to its initial state within days to weeks after antibiotic treatment, some studies have shown a longer-term impact of antibiotics on specific microbial populations that can persist for months to years.

It is unclear as to why antibiotic exposure was associated with new-onset CD and not UC. Studies have suggested a difference in the microbiota between CD and UC patients....Our finding that pediatric populations appear to have an increased association of antibiotic use with new-onset CD compared with adults may reflect the less stable nature of the microbiome earlier in life. During the first 3 years of life, the microbiome appears to undergo marked changes and significant maturation toward an adult-like composition with greater interpersonal variation. It is possible that antibiotics may therefore have a greater impact during childhood when the gut microbiota composition is still developing.