Skip to content

Once again air pollution is linked to health problems, this time exposure during pregnancy is linked to congenital malformations (what are commonly called birth defects). From Science Daily:

Smoke signals: New evidence links air pollution to congenital defects

The health effects of air pollution are a major concern for urban populations all over the world. A new study provides new evidence linking high exposure to air pollution to an increased risk of congenital malformations. Children, the elderly, and people with impaired respiratory systems (such as asthmatics) tend to be especially sensitive to the impact of exposure to ozone, nitrogen dioxide, sulphur dioxide, and particulate matter.

A recent study by Tel Aviv University researchers provides new evidence linking high exposure to air pollution to an increased risk of congenital malformations. The nationwide study is the first to assess the association between different modes of conception-assisted reproductive technology (ART) versus spontaneous conception (SC) -- and the risks of exposure to air pollution to each.

"Our results suggest that exposure to higher levels of air pollution during pregnancy is associated with various adverse pregnancy outcomes," said Prof. Lerner-Geva. "While our study mainly followed SC infants, we also had the opportunity to assess a small sample of pregnancies that were conceived through ART, and observed a higher impact of air pollution -- particularly with regard to ozone exposure. This is clearly a uniquely susceptible population that should be further explored."

For the study, funded by the Environmental Health Fund (EHF), the research team analyzed data on 216,730 born in Israel between 1997 and 2004. Air pollution data, including, levels of sulfur dioxide (SO2), particulate matter (PM10), nitrogen oxides (NOx), and ozone (O3) were obtained from air monitoring stations for the study period. Using a geographic information system, exposure to air pollution during both the first trimester and the entire pregnancy was assessed for each woman according to her place of residence.

The researchers found that exposure to PM10 and NOX pollutants throughout full-term pregnancies were associated with an increased risk of congenital malformations, with specific defects evident in the circulatory system (from PM10 and NOX exposure) and genital organs (from NOX exposure). They also discovered that exposure to SO2 and O3 in ART pregnancies were associated, although not significantly, with a higher risk of congenital defects.

Two studies finding various forms of air pollution having effects on the developing fetus - the first one (fine particulate air pollution) to autism, and the second (outgassing of new flooring) to later breathing problems.

From Medical Xpress: Fine particulate air pollution linked with increased autism risk

Women exposed to high levels of fine particulate matter specifically during pregnancy—particularly during the third trimester—may face up to twice the risk of having a child with autism than mothers living in areas with low particulate matter, according to a new study from Harvard School of Public Health (HSPH). The greater the exposure, the greater the risk, researchers found. It was the first U.S.-wide study exploring the link between airborne particulate matter and autism.

"Our data add additional important support to the hypothesis that maternal exposure to air pollution contributes to the risk of autism spectrum disorders," said Marc Weisskopf, associate professor of environmental and occupational epidemiology and senior author of the study.... Prior studies have suggested that, in addition to genetics, exposure to airborne environmental contaminants, particularly during pregnancy and early life, may affect risk of autism. This study focused specifically on the pregnancy period.

The study population included offspring of participants living in all 50 states in Nurses' Health Study II, a cohort of more than 116,000 female U.S. nurses begun in 1989. The researchers collected data on where participants lived during their pregnancies as well as data from the U.S. Environmental Protection Agency and other sources on levels of fine particulate matter air pollution (PM2.5)—particles 2.5 microns in diameter or smaller—in locations across the U.S. The researchers identified 245 children who were diagnosed with autism spectrum disorder (ASD) and a control group of 1,522 children without ASD during the time period studied.

Exposure to PM2.5 was significantly associated with autism during pregnancy, but not before or after, the study found. And during the pregnancy, the third trimester specifically was significantly associated with an increased risk. Little association was found between air pollution from larger-sized particles (PM10-2.5) and autism.

From Science Daily: New floor covering can lead to breathing problems in babies

New flooring in the living environment of pregnant women significantly increases the risk of infants to suffer from respiratory diseases in their first year of life. This is the result of a study that demonstrates that exposure to volatile organic compounds in the months before and after birth induces breathing problems in early childhood. The scientists therefore recommend that redecoration should be avoided during pregnancy or in the first year of children’s life.

The observed health risks are caused by increased concentrations of volatile organic compounds (in short: VOCs), such as styrene or ethylbenzene, which escape from new flooring and are then absorbed through the respiratory air. "We therefore do not recommend that laminate, carpet or floor coverings be laid in the homes of pregnant women. Although the concentrations of these volatile chemicals are lower if no adhesive is used when installing the flooring, even then the concentrations are still high enough to significantly increase the risk of infants suffering from respiratory complaints in their first few months," explains Dr. Ulrich Franck from the UFZ. 

Earlier studies from Leipzig had already shown that chemicals from home renovations lead to changes in the immune system of new-born children.... According to our results, exposure to these volatile chemical compounds seems to be more critical in pregnancy than in the first year of a child's life," concludes Dr. Irina Lehmann from the UFZ, who is in charge of the LINA study on lifestyle and environmental factors and their influence on the risk of allergies in newborn babies. An analysis of the data showed that renovations after the birth of a child had a much lower impact on respiratory problems than during pregnancy.

Bottom line: view the games as fun and a way to pass some time, but nothing more. From the Atlantic:

The Myth of the Brain Game

Over the past decade, digital brain-training games have emerged as the newest way to sharpen memory skills. They’re often touted as having a wide range of benefits, from helping people remember names and childhood stories to possibly staving off dementia and Alzheimer's disease.

In October, Stanford University’s Center for Longevity and the Max Planck Institute for Human Development in Berlin asked a group of more than 70 neuroscientists, cognitive psychologists, and academics to share their views on these games. “There is little evidence that playing brain games improves underlying broad cognitive abilities, or that it enables one to better navigate a complex realm of everyday life,” the group wrote in a consensus report.

The validity of brain games has been a point of debate ever since the first iterations of them launched in the early 2000s. What’s notable about the Stanford/Max Planck report is its deliberation and scope, offering insight collected over the course of a year from experts based at 40 institutions in six different countries.

The report questions the “pernicious,” “exaggerated,” and “misleading” claims made by brain-game manufacturers and stresses that wide-reaching positive results are “elusive.” The signatories don’t call out any specific types of brain-training software, but their language is often damning. “Many scientists cringe at exuberant advertisements claiming improvements in the speed and efficiency of cognitive processing and dramatic gains in ‘intelligence,’” they write.

Brain training is projected to be a $3 billion industry by 2015. Its target demographic is vast, from kids lagging behind in school to seniors who’d love to be able to remember things more efficiently. Most people, in fact, would appreciate the opportunity to feel like they’re getting the most out of their brains, and when a particular product is advertised as being both educational and backed by science, it can be hard to resist.

That there’s a need for scientists to issue a signed letter like this one only goes to show how popular brain games are and to what extent experts feel the public may have been seduced by the promise that they’re endorsed by science. The letter is both a word of caution to the public and the signatories’ way of distancing themselves from the commercial products. 

In 2013, two researchers at the University of Oslo and University College London conducted a meta-analysis of 23 different brain-training studies. What they saw was what every skeptic has seemed to notice. “Memory training programs appear to produce short-term, specific training effects that do not generalize,” they wrote. That is, training with games helped people get better at the games they were playing, but not much else.

Brain games aren’t a complete waste of time. They provide mental stimulation, the kind that doctors advise the elderly to get from crosswords and other mind games. They are fun, engaging, even competitive. They show how we can train the brain to get better at a task with repeated practice. But these are fairly obvious results given what we know about the brain's plasticity. 

All that said, the things that do help shape a healthy brain are the things that have been tried and tested for years. Physical fitness forces more blood to flow into the brain, allowing for more neural connections. So exercise works, as does conventional training in reading and language skills for children with reading-comprehension and oral language difficulties.

Also helpful are curiosity and engagement with the world around us, and the body’s lifelong subconscious effort to keep the brain active. The report's summary is perhaps the biggest indictment of any pop-a-pill brain-game philosophy. “The promise of a magic bullet detracts from the best evidence to date,” they wrote. “Cognitive health in old age reflects the long-term effects of healthy, engaged lifestyles.”

Children spending time outside (more than 14 hours a week) have lower rates of nearsightedness, even if they spend a lot of time reading. From Science Daily:

Scientists study effects of sunlight to reduce number of nearsighted kids

Kids who spend more time outside are less likely to need glasses for nearsightedness – but scientists don’t know why. Researchers are now looking more closely at physical changes in the eye influenced by outdoor light exposure in the hopes of reducing cases of myopia, which affects one-third of the American population.

Despite what many parents may think, kids who spend a lot of time reading or squinting at tiny electronic screens aren't more likely to become nearsighted than kids who don't. However, that risk is only reduced if the child spends plenty of quality time outside. The "outdoor effect" on nearsightedness, or myopia, is a longstanding observation backed by both scientific and anecdotal evidence. It's so compelling that some nations in Asia, which have among the highest myopia rates in the world, have increased the amount of daily outdoor time for children in the hopes of reducing the need for glasses.

But so far, no one has defined exactly what it is about being outside that seems to offer a protective effect against the condition, which causes distant objects to appear blurry.

"Data suggest that a child who is genetically predisposed to myopia are three times less likely to need glasses if they spend more than 14 hours a week outdoors," says optometrist Donald Mutti, OD, PhD, of The Ohio State University College of Optometry. "But we don't really know what makes outdoor time so special. If we knew, we could change how we approach myopia."

Supported by a pilot grant from Ohio State's Center for Clinical and Translational Science (CCTS), Mutti is now focusing his research on the variables he feels have the most potential: invisible ultraviolet B rays (UVB) and vitamin D, and visible bright light and dopamine."Between the ages of five and nine, a child's eye is still growing. Sometimes this growth causes the distance between the lens and retina to lengthen, leading to nearsightedness," explained Mutti. "We think these different types of outdoor light may help preserve the proper shape and length of the eye during that growth period."

UVB light is invisible to the human eye, but triggers several cellular functions in the body, including the production of vitamin D. Vitamin D is thought to support the function of the smooth muscle tissue found around the lens in the eye. This muscle not only helps focus light on the retina, but may also maintain the proper eye shape and length between the lens and the retina, something that can become distorted during the rapid growth of a child's eye.

Some studies, including one by Mutti, show that people with myopia have lower blood levels of vitamin D -- indicating that they have spent less time outdoors, with possible negative effects on the eye..."We don't know if vitamin D is simply a proxy for measuring outdoor time, or if it is actually exerting a biological effect on how the eye works and develops," said Mutti.

There's another part of sunlight that could help prevent myopia: exposure to visible bright light. Even on a cloudy day, visible light outdoors is at least 10 times brighter than the light indoors.When exposed to outdoor light, specialized cells in the retina help control how big or little the pupil dilates to let more or less light in. The cells connect to others that release dopamine -- an important neurotransmitter in the eye and brain. Previous research suggests that dopamine also slows down the growth of the eye, but there isn't technology currently available that can measure dopamine release in the eye directly.

This research finding of lower IQ in children with higher exposure to 2 common phthalates during pregnancy is very troubling. Especially since avoiding all phthalates in the USA is currently impossible. But one can lower levels in the body by reading all ingredients and trying to avoid certain products (e.g. dryer sheets, vinyl shower curtains, personal care products with phthalates, scented products). And don't microwave food in plastic containers. From Science Daily:

Prenatal exposure to common household chemicals linked with substantial drop in child IQ

Children exposed during pregnancy to elevated levels of two common chemicals found in the home -- di-n-butyl phthalate and di-isobutyl phthalate -- had an IQ score, on average, more than six points lower than children exposed at lower levels, according to researchers.

DnBP and DiBP are found in a wide variety of consumer products, from dryer sheets to vinyl fabrics to personal care products like lipstick, hairspray, and nail polish, even some soaps. Since 2009, several phthalates have been banned from children's toys and other childcare articles in the United States. 

Researchers followed 328 New York City women and their children from low-income communities. They assessed the women's exposure to four phthalates--DnBP, DiBP, di-2-ethylhexyl phthalate, and diethyl phthalate--in the third trimester of pregnancy by measuring levels of the chemicals' metabolites in urine. Children were given IQ tests at age 7.

Children of mothers exposed during pregnancy to the highest 25 percent of concentrations of DnBP and DiBP had IQs 6.6 and 7.6 points lower, respectively, than children of mothers exposed to the lowest 25 percent of concentrations after controlling for factors like maternal IQ, maternal education, and quality of the home environment that are known to influence child IQ scores. The association was also seen for specific aspects of IQ, such as perceptual reasoning, working memory, and processing speed. The researchers found no associations between the other two phthalates and child IQ. The range of phthalate metabolite exposures measured in the mothers was not unusual: it was within what the Centers for Disease Control and Prevention observed in a national sample.

"A six- or seven-point decline in IQ may have substantial consequences for academic achievement and occupational potential.""While there has been some regulation to ban phthalates from toys of young children," adds Dr. Factor-Litvak, "there is no legislation governing exposure during pregnancy, which is likely the most sensitive period for brain development. Indeed, phthalates are not required to be on product labeling."

While avoiding all phthalates in the United States is for now impossible, the researchers recommend that pregnant women take steps to limit exposure by not microwaving food in plastics, avoiding scented products as much as possible, including air fresheners, and dryer sheets, and not using recyclable plastics labeled as 3, 6, or 7.

The findings build on earlier, similar observations by the researchers of associations between prenatal exposure to DnBP and DiBP and children's cognitive and motor development and behavior at age 3. This September, they reported a link between prenatal exposure to phthalates and risk for childhood asthma. It's not known how phthalates affect child health. However, numerous studies show that they disrupt the actions of hormones, including testosterone and thyroid hormone. Inflammation and oxidative stress may also play a role.

Considering all the antibiotics that the typical sinusitis sufferer takes over the years, reading this article was depressing. One wonders, can the gut microbiome (community of microbes) recover from many rounds of antibiotics and how long does it take? Please note: CD is Crohn's disease, UC is ulcerative colitis, and IBD is inflammatory bowel disease. Dysbiosis means that the community of microbes (microbiome) is out-of-whack. From Medscape:

Antibiotics Associated With Increased Risk of New-onset Crohn's Disease but not Ulcerative Colitis

The objective of this study was to perform a meta-analysis investigating antibiotic exposure as a risk factor for developing inflammatory bowel disease (IBD).A literature search using Medline, Embase, and Cochrane databases was performed to identify studies providing data on the association between antibiotic use and newly diagnosed IBD. 

Conclusions: Exposure to antibiotics appears to increase the odds of being newly diagnosed with CD but not UCThis risk is most marked in children diagnosed with CD.

--------------------------------------------------------------------------

Environmental factors have a key role in the pathogenesis of inflammatory bowel disease (IBD)...Furthermore, the incidence of IBD has been increasing worldwide over time. Developing countries have seen an increase in IBD incidence as they have Westernized.

Emerging evidence suggests that certain medications are associated with an increased risk of new-onset IBD. In particular, antibiotics have been linked to the development of both Crohn's disease (CD) and ulcerative colitis (UC).Growing research suggests that the microbiome and its interaction with the mucosal immune system are important in the pathogenesis of IBD.Antibiotics can cause alterations to the microbiome that may potentially contribute to the dysbiosis and dysregulated immune response seen in IBD.

Previous studies have investigated the association of antibiotic exposure with newly diagnosed IBD in both adult and pediatric populations. CD has been more consistently associated with antibiotic use, with some studies demonstrating an increased risk of CD but not UC. It also appears that patients who receive more frequent courses of antibiotics have a higher likelihood of developing IBD.

The results of this meta-analysis suggest that exposure to antibiotics increases the risk of new-onset IBD. When stratifying by type of IBD, antibiotic exposure was associated with an increased risk of developing CD but not UC. We found that the magnitude of risk of new CD is greater for children than for adults. All classes of antibiotics studied, with the exception of penicillins, were associated with new diagnoses of IBD. Interestingly, the types of antibiotics showing the strongest association were fluoroquinolones and metronidazole.

Although it is impossible to draw causal links on the basis of these data, there are some possible implications and explanations for our findings. First, our findings may support the importance of disruptions in the microbiome in the pathogenesis of IBD. The link between antibiotic exposure and new IBD seems biologically plausible. It is known that the microbiome likely has an important role in the pathogenesis of IBD. Studies have shown a decrease in the diversity and stability of both mucosa-associated bacteria and fecal bacteria in patients with CD and UC.For example, the largest cohort microbiome study to date recently found that newly diagnosed CD patients have increased Enterobacteriaceae,Pasteurellaceae, Veillonellaceae, and Fusobacteriaceae, and decreased Erysipelotrichales, Bacteroidales, and Clostridiales.

Antibiotics have been shown to alter the composition of the human gut microbiota by decreasing taxonomic richness and diversity....Although the microbiome may recover to its initial state within days to weeks after antibiotic treatment, some studies have shown a longer-term impact of antibiotics on specific microbial populations that can persist for months to years.

It is unclear as to why antibiotic exposure was associated with new-onset CD and not UC. Studies have suggested a difference in the microbiota between CD and UC patients....Our finding that pediatric populations appear to have an increased association of antibiotic use with new-onset CD compared with adults may reflect the less stable nature of the microbiome earlier in life. During the first 3 years of life, the microbiome appears to undergo marked changes and significant maturation toward an adult-like composition with greater interpersonal variation. It is possible that antibiotics may therefore have a greater impact during childhood when the gut microbiota composition is still developing.

Makes sense. From Science Daily:

High school football players show brain changes after one season, even in absence of concussions

Some high school football players exhibit measurable brain changes after a single season of play even in the absence of concussion, according to a new study.

Dr. Whitlow and colleagues set out to determine if head impacts acquired over a season of high school football produce white matter changes in the brain in the absence of clinically diagnosed concussion.The researchers studied 24 high school football players between the ages of 16 and 18. For all games and practices, players were monitored with Head Impact Telemetry System (HITs) helmet-mounted accelerometers, which are used in youth and collegiate football to assess the frequency and severity of helmet impacts.

Risk-weighted cumulative exposure was computed from the HITs data, representing the risk of concussion over the course of the season. This data, along with total impacts, were used to categorize the players into one of two groups: heavy hitters or light hitters. There were nine heavy hitters and 15 light hitters. None of the players experienced concussion during the season.

All players underwent pre- and post-season evaluation with diffusion tensor imaging (DTI) of the brain. DTI is an advanced MRI technique, which identifies microstructural changes in the brain's white matter.

The brain's white matter is composed of millions of nerve fibers called axons that act like communication cables connecting various regions of the brain. Diffusion tensor imaging produces a measurement, called fractional anisotropy (FA), of the movement of water molecules along axons. In healthy white matter, the direction of water movement is fairly uniform and measures high in fractional anisotropy. When water movement is more random, fractional anisotropy values decrease, suggesting microstructural abnormalities.

The results showed that both groups demonstrated global increases of FA over time, likely reflecting effects of brain development. However, the heavy-hitter group showed statistically significant areas of decreased FA post-season in specific areas of the brain, including the splenium of the corpus callosum and deep white matter tracts.

"Our study found that players experiencing greater levels of head impacts have more FA loss compared to players with lower impact exposure," Dr. Whitlow said. "Similar brain MRI changes have been previously associated with mild traumatic brain injury. However, it is unclear whether or not these effects will be associated with any negative long-term consequences."

Another research result from the American Gut Project, an amazing crowdsourced project. While differences were found in the fecal microbiome (microbial community) of adults born by cesarean section vs vaginal delivery, it is unknown whether this has any possible effects on diseases or risks of diseases during adulthood. This study is online as of 8 November 2014, but still In Press. From EBioMedicine:

Diversity and Composition of the Adult Fecal Microbiome Associated with History of Cesarean Birth or Appendectomy: Analysis of the American Gut Project

Adults born by cesarean section appear to have a distinctly different composition of their fecal microbial population. Whether this distinction was acquired during birth, and whether it affects risk of disease during adulthood, are unknown.

Prenatal and early postnatal exposures and events can affect the entire life course. As one example, cesarean birth has been associated with an increased likelihood of asthma and cardiovascular disease in children (Renz-Polster et al., 2005, Thavagnanam et al., 2008 and Friedemann et al., 2012), hypertension in young adults (Horta et al., 2013), and obesity in both children and adults (Pei et al., 2014, Darmasseelane et al., 2014,Blustein et al., 2013 and Mueller et al., 2014). ... As well summarized by Arrieta and colleagues, several studies have noted differences in the neonatal fecal microbiota by route of delivery (Arrieta et al., 2014). ... More recently, with comprehensive analysis based on next generation sequencing of 16S rRNA genes, Dominguez-Bello and colleagues reported that route of delivery was associated with differences in the composition of the microbial populations that initially colonized the offspring. Notably, neonates who were born vaginally were colonized by vagina-associated bacteria, whereas those born by cesarean section were initially colonized by skin-associated bacteria ( Dominguez-Bello et al., 2010).

Early life alteration of the gut microbiota may have a lasting effect. Trasande et al. observed that exposure to antibiotics up to age 6 months was associated with elevated body mass index (BMI) up to age 7 years (Trasande et al., 2013).

The 16S rRNA V4 region was sequenced by the American Gut Project....Of the 1097 participants, cesarean birth was reported as “yes” by 92, “no” by 948, and missing or uncertain by 57. Likewise, appendectomy was reported as “yes” by 155, “no” by 961, and missing or uncertain by 21.

This analysis was primarily motivated by the observation that the composition of the microbiome of neonates differed significantly between those born vaginally and those born by cesarean section (Arrieta et al., 2014 and Dominguez-Bello et al., 2010). With vaginal delivery, the neonatal microbiome resembled the vaginal microbiome, with high relative abundance of Prevotella and especially Lactobacillus taxa. In contrast, cesarean-delivered neonates had a diverse array of taxa resembling the skin microbial community, including Staphylococcus, Streptococcus, Propionibacterineae, Haemophilus, and Acinetobacter ( Dominguez-Bello et al., 2010). Cesarean-delivered neonates and infants typically have a paucity of Bifidobacterium and Bacteroides species ( Arrieta et al., 2014).

In the current analysis, we observed that the fecal microbiome composition differed in adults who reported that they had been delivered by cesarean section. This suggests that a difference by route of delivery may persist into adulthood. Of the taxa noted to be increased in cesarean-delivered neonates and infants ( Arrieta et al., 2014, Penders et al., 2006 and Dominguez-Bello et al., 2010), only Haemophilus and certain Clostridia genera had elevated abundance in the fecal microbiome of cesarean-delivered adults ( Table 3).

Yes! An approach to ADHD that makes sense. Nice piece from Richard A. Friedman, professor of clinical psychiatry and director of the psychopharmacology clinic at the Weill Cornell Medical College. From NY Times:

A Natural Fix for A.D.H.D.

Attention deficit hyperactivity disorder is now the most prevalent psychiatric illness of young people in America, affecting 11 percent of them at some point between the ages of 4 and 17. The rates of both diagnosis and treatment have increased so much in the past decade that you may wonder whether something that affects so many people can really be a disease.

And for a good reason. Recent neuroscience research shows that people with A.D.H.D. are actually hard-wired for novelty-seeking — a trait that had, until relatively recently, a distinct evolutionary advantage. Compared with the rest of us, they have sluggish and underfed brain reward circuits, so much of everyday life feels routine and understimulating.

To compensate, they are drawn to new and exciting experiences and get famously impatient and restless with the regimented structure that characterizes our modern world. In short, people with A.D.H.D. may not have a disease, so much as a set of behavioral traits that don’t match the expectations of our contemporary culture.

From the standpoint of teachers, parents and the world at large, the problem with people with A.D.H.D. looks like a lack of focus and attention and impulsive behavior. But if you have the “illness,” the real problem is that, to your brain, the world that you live in essentially feels not very interesting.The more novel and unpredictable the experience, the greater the activity in your reward center. But what is stimulating to one person may be dull — or even unbearably exciting — to another. There is great variability in the sensitivity of this reward circuit.

These findings suggest that people with A.D.H.D are walking around with reward circuits that are less sensitive at baseline than those of the rest of us. Having a sluggish reward circuit makes normally interesting activities seem dull and would explain, in part, why people with A.D.H.D. find repetitive and routine tasks unrewarding and even painfully boring.

Another patient of mine, a 28-year-old man, was having a lot of trouble at his desk job in an advertising firm. Having to sit at a desk for long hours and focus his attention on one task was nearly impossible. He would multitask, listening to music and texting, while “working” to prevent activities from becoming routine. Eventually he quit his job and threw himself into a start-up company, which has him on the road in constantly changing environments. He is much happier and — little surprise — has lost his symptoms of A.D.H.D.

My patient “treated” his A.D.H.D simply by changing the conditions of his work environment from one that was highly routine to one that was varied and unpredictable. All of a sudden, his greatest liabilities — his impatience, short attention span and restlessness — became assets. And this, I think, gets to the heart of what is happening in A.D.H.D.

Consider that humans evolved over millions of years as nomadic hunter-gatherers. It was not until we invented agriculture, about 10,000 years ago, that we settled down and started living more sedentary — and boring — lives. As hunters, we had to adapt to an ever-changing environment where the dangers were as unpredictable as our next meal. In such a context, having a rapidly shifting but intense attention span and a taste for novelty would have proved highly advantageous in locating and securing rewards — like a mate and a nice chunk of mastodon. In short, having the profile of what we now call A.D.H.D. would have made you a Paleolithic success story.

So if you are nomadic, having a gene that promotes A.D.H.D.-like behavior is clearly advantageous (you are better nourished), but the same trait is a disadvantage if you live in a settled context.

You may wonder what accounts for the recent explosive increase in the rates of A.D.H.D. diagnosis and its treatment through medication. The lifetime prevalence in children has increased to 11 percent in 2011 from 7.8 percent in 2003 — a whopping 41 percent increase — according to the Centers for Disease Control and Prevention. And 6.1 percent of young people were taking some A.D.H.D. medication in 2011, a 28 percent increase since 2007. Most alarmingly, more than 10,000 toddlers at ages 2 and 3 were found to be taking these drugs, far outside any established pediatric guidelines.

Some of the rising prevalence of A.D.H.D. is doubtless driven by the pharmaceutical industry, whose profitable drugs are the mainstay of treatment. Others blame burdensome levels of homework, but the data show otherwise. Studies consistently show that the number of hours of homework for high school students has remained steady for the past 30 years.

I think another social factor that, in part, may be driving the “epidemic” of A.D.H.D. has gone unnoticed: the increasingly stark contrast between the regimented and demanding school environment and the highly stimulating digital world, where young people spend their time outside school. Digital life, with its vivid gaming and exciting social media, is a world of immediate gratification where practically any desire or fantasy can be realized in the blink of an eye. By comparison, school would seem even duller to a novelty-seeking kid living in the early 21st century than in previous decades, and the comparatively boring school environment might accentuate students’ inattentive behavior, making their teachers more likely to see it and driving up the number of diagnoses.

Perhaps one explanation is that adults have far more freedom to choose the environment in which they live and the kind of work they do so that it better matches their cognitive style and reward preferences. If you were a restless kid who couldn’t sit still in school, you might choose to be an entrepreneur or carpenter, but you would be unlikely to become an accountant. 

The studies are adding up that phthalates are harmful to humans of all ages, but uniquely so to the developing fetus. Boys exposed to high levels of phthalates before birth may have slightly altered genitals, specifically a shortened anogenital distance (the length between the anus and the genitals). This is concerning because in adulthood, this is associated with reduced semen quality and lower fertility in males - and considered a sign of incomplete masculinization. So try to avoid or lower exposure to phthalates during pregnancy (see posts on ENDOCRINE DISRUPTORS). From Environmental Health Perspectives:

Plastics chemical linked to changes in baby boys' genitals

Boys exposed in the womb to high levels of a chemical found in vinyl products are born with slightly altered genital development, according to research published today.The study of nearly 200 Swedish babies is the first to link the chemical di-isononyl phthalate (DiNP) to changes in the development of the human male reproductive tract.

Previous studies of baby boys in three countries found that a similar plastics chemical, DEHP, was associated with the same type of changes in their genitalia. Less is known about the reproductive risks of DiNP, a chemical which scientists say may be replacing DEHP in many products such as vinyl toys, flooring and packaging. In mice, high levels block testosterone and alter testicular development.

“Our data suggest that this substitute phthalate may not be safer than the chemical it is replacing,” wrote the researchers, led by Carl-Gustaf Bornehag at Sweden’s Karlstad University, in the journal Environmental Health Perspectives. Levels of DiNP in U.S. adults and children have more than doubled in the past decade.

The researchers measured metabolites of five phthalates in the urine of pregnant women during the first trimester. Development of male reproductive organs begins during that period, said senior study author Shanna Swan, a professor of reproductive science at Mount Sinai Hospital in New York. The researchers then measured the anogenital distance – the length between the anus and the genitals – when the boys were on average 21 months old. Boys who had been exposed to the highest levels of DiNP in the womb averaged a distance that was slightly shorter – about seven-hundredths of an inch – than the boys with the lowest exposures. “These were really subtle changes,” Swan said.

Considered a sign of incomplete masculinization, shortened anogenital distance in men has been associated with abnormal testicular development and reduced semen quality and fertility. In men, this measurement is typically 50 to 100 percent longer than in women. But it’s unknown whether a slightly shorter distance in infants corresponds with any fertility problems later in life.

For other phthalates, the study found shorter anogenital distance with higher concentrations, but the findings were not statistically significant, meaning they may have been due to chance. The Swedish women in the new study had phthalate levels similar to U.S. women in Swan's previous studies. Those studies, published in 2005 and 2008, linked several phthalates to shorter anogenital distance.

The scientists said exposures to the chemical can come from food or through skin contact with home furnishings or child-care articles. In 2008, the United States temporarily banned use of DiNP and two other phthalate plasticizers in toys and other children's products.... While it’s nearly impossible to eliminate exposure to phthalates, Swan suggested that pregnant women may be able to reduce their exposures by incorporating unprocessed, unpackaged foods into the diet and by avoiding heating or storing foods in plastic containers.