Skip to content

Several more articles on the benefits of exercise. From Science Daily:

Train your heart to protect your mind

Exercising to improve our cardiovascular strength may protect us from cognitive impairment as we age, according to a new study. "Our body's arteries stiffen with age, and the vessel hardening is believed to begin in the aorta, the main vessel coming out of the heart, before reaching the brain. Indeed, the hardening may contribute to cognitive changes that occur during a similar time frame," explained the first author of the study. "We found that older adults whose aortas were in a better condition and who had greater aerobic fitness performed better on a cognitive test. We therefore think that the preservation of vessel elasticity may be one of the mechanisms that enables exercise to slow cognitive aging."

The researchers worked with 31 young people between the ages of 18 and 30 and 54 older participants aged between 55 and 75. This enabled the team to compare the older participants within their peer group and against the younger group who obviously have not begun the aging processes in question. None of the participants had physical or mental health issues that might influence the study outcome.

The results demonstrated age-related declines in executive function, aortic elasticity and cardiorespiratory fitness, a link between vascular health and brain function, and a positive association between aerobic fitness and brain function. "Although the impact of fitness on cerebral vasculature may however involve other, more complex mechanisms, overall these results support the hypothesis that lifestyle helps maintain the elasticity of arteries, thereby preventing downstream cerebrovascular damage and resulting in preserved cognitive abilities in later life."

From Science Daily:

Physically fit kids have beefier brain white matter than their less-fit peers

A new study of 9- and 10-year-olds finds that those who are more aerobically fit have more fibrous and compact white-matter tracts in the brain than their peers who are less fit. 'White matter' describes the bundles of axons that carry nerve signals from one brain region to another. More compact white matter is associated with faster and more efficient nerve activity.

The analysis revealed significant fitness-related differences in the integrity of several white-matter tracts in the brain: the corpus callosum, which connects the brain's left and right hemispheres; the superior longitudinal fasciculus, a pair of structures that connect the frontal and parietal lobes; and the superior corona radiata, which connect the cerebral cortex to the brain stem."All of these tracts have been found to play a role in attention and memory," Chaddock-Heyman said. 

From Science Daily:

Exercise may protect older women from irregular heartbeat

Increasing the amount or intensity of physical activity can cut the chances of older women developing a life-threatening irregular heartbeat, according to new research. Researchers found that post-menopausal women who were the most physically active had a 10 percent lower risk of developing atrial fibrillation (AF), compared to women with low levels of physical activity, even if they were obese. Obesity is an important risk factor for atrial fibrillation.

An interesting small study of the human armpit bacterial community. From Real Clear Science:

Antiperspirants Alter Your Armpit Bacteria and Could Actually Make You Smell Worse

In modern society, antiperspirants are widely hailed as a godsend, dispelling the inconvenient odors wafting from armpits everywhere. But a new study casts doubts on their vaunted position. As it turns out, antiperspirants may actually make you smell worse in the long run.

For 90% of all Americans, slathering on deodorants and antiperspirants is a daily occurrence, a precautionary measure against foul odors and unsightly sweat stains. The odors arise when bacteria living in our armpits break down lipids and amino acids excreted in sweat into more smelly substances. Deodorants employ antimicrobial agents that kill off bacteria, as well as chemicals that replace noxious odors with pleasant aromas. Deodorants that double as antiperspirants, like Degree, Old Spice, and Dove, take the process one step further by physically plugging sweat glands with aluminum-based compounds.

While most of us might only concern ourselves with the dry, aromatic benefits of antiperspirants and deodorants, researchers at the Laboratory of Microbial Ecology and Technology at the University of Ghent in Belgium are more interested in the effects on bacteria. Billions of bacteria dwell in the "rain forests" under our arms, and the substances we don are mucking with their habitats!

To uncover how deodorants and antiperspirants affect armpit bacteria, Chris Callewaert, a Ph.D student specializing in microbial ecology, and a team of researchers recruited eight subjects for a task a great many people (and especially their friends) might deem unbearable: Six males and two females pledged not to use deodorant or antiperspirant for an entire month. Specifically, four subjects stopped using their deodorants and another four stopped using their antiperspirant deodorant. (Most antiperspirants are also deodorants. See image below for an example.) Another control subject who did not regularly use either was asked to use deodorant for a month. The duration was chosen because it takes approximately 28 days for a new layer of skin cells to form.

The researchers analyzed the diversity and abundance of subjects' armpit bacteria at various timepoints before they stopped using antiperspirant, during the period of abstaining from antiperspirant, and for a few weeks after resuming the use of antiperspirant. Switching hygiene habits plainly altered the armpit bacterial communities of every subject. Since no two armpits and their resident bacteria are identical, it was difficult to pinpoint precise changes brought about by deodorants or antiperspirants, but one clear trend did materialize: antiperspirants resulted in a clear increase of Actinobacteria.

You might not recognize the name of Actinobacteria, but chances are, you've smelled them. Dominated by Corynebacterium, they are the major instigators of noxious armpit odor. Other microbes that inhabit the armpit, like Firmicutes and Staphylococcus, don't produce odors as quickly, nor are those odors nearly as pungent.

Callewaert believes the aluminum compounds in antiperspirants may be to blame, killing off "good," less smelly bacteria and allowing "bad" bacteria to dominate. His study found that deodorants which lack these sweat-blocking antiperspirant compounds are actually linked to a slight decrease of stinky Actinobacteria.

Though antiperspirants and deodorants are widely used, they are only a temporary fix."The measures we utilize today do not take away the initial source: the odor causing bacteria," Callewaert told RealClearScience. "Deodorants only mask unpleasant odors. We can do better than that. The follow up of this research is finding better solutions."

And Callewaert is already working on one: "armpit bacterial transplantation"."We take away the bad bacteria from the armpit of somebody with a body odor, and replace it with the good bacteria of a relative who doesn't have a body odor," he explained."So far we have helped over 15 people. For most subjects it brings immediate improvements. Most of them on a permanent time scale, although there are also people who suffer again from a body odor after some months."

The bottom line is to read the ingredients list on products, and avoid all products labeled "antimicrobial" or "antibacterial" (because those are the ones typically containing triclosan and triclorocarban). Over 2000 products contain antibacterial compounds. I've even seen them in pillows, pillow protectors, mattress pads, dish racks, toys, and blankets! As we know from the latest microbiology research, we need to cultivate a healthy microbiome, and not throw it out of whack by continuously trying to kill off all bacteria. From The Atlantic:

It's Probably Best to Avoid Antibacterial Soaps

Antimicrobial chemicals are so ubiquitous that a recent study found them in pregnant mothers' urine and newborns' cord blood. Research shows that their risks may outweigh their benefits.

Antimicrobial chemicals, intended to kill bacteria and other microorganisms, are commonly found in not just soaps, but all kinds of products—toothpaste, cosmetics, and plastics among them. There is evidence that the chemicals aren’t always effective, and may even be harmful, and their ubiquity means people are often continually exposed to them. One such chemical, triclosan, has previously been found in many human bodily fluids. New research found traces of triclosan, triclocarban, and butyl paraben in the urine of pregnant women, and the cord blood of newborn infants. 

The research looked at the same population of 180 expectant mothers living in Brooklyn, New York, most of Puerto Rican descent. In a study published last week in Environmental Science and Technology, researchers from Arizona State University and State University of New York’s Downstate School of Public Health found triclosan in 100 percent of the women’s urine samples, and triclocarban in 87 percent of the samples. Of the 33 cord blood samples they looked at, 46 percent contained triclosan and 23 percent contained triclocarban.

In another, still-unpublished study, the researchers found that all of the cord blood samples contained “at least one paraben,” according to Dr. Rolf Halden, director of ASU’s Center for Environmental Security. 

Triclosan and triclocarban are endocrine disruptors, Halden explains. The risk there is that the chemicals can mimic thyroid hormones, potentially disrupting the metabolism and causing weight gain or weight loss. Previous research has also shown a connection between higher levels of triclosan in urine, and allergy diagnoses in children.

In the study looking at butyl paraben, the researchers found an association between higher exposure to the chemical, and a smaller head circumference and length of babies after they were born. Butyl paraben is used as a preservative, so it’s found in a wider breadth of products, according to Halden.

From Science News: Pregnant women, fetuses exposed to antibacterial compounds face potential health risks 


As the Food and Drug Administration mulls over whether to rein in the use of common antibacterial compounds that are causing growing concern among environmental health experts, scientists are reporting that many pregnant women and their fetuses are being exposed to these substances. The compounds are used in more than 2,000 everyday products marketed as antimicrobial, including toothpastes, soaps, detergents, carpets, paints, school supplies and toys, the researchers say.

The problem with this, explains Pycke, a research scientist at Arizona State University (ASU), is that there is a growing body of evidence showing that the compounds can lead to developmental and reproductive problems in animals and potentially in humans. Also, some research suggests that the additives could contribute to antibiotic resistance, a growing public health problem.

Although the human body is efficient at flushing out triclosan and triclocarban, a person's exposure to them can potentially be constant. "If you cut off the source of exposure, eventually triclosan and triclocarban would quickly be diluted out, but the truth is that we have universal use of these chemicals, and therefore also universal exposure," says Rolf Halden, Ph.D., the lead investigator of the study at ASU.

Here it is, a list of 17 cancers linked to being overweight or obese. From Science Daily:

Overweight and obesity linked to 10 common cancers, over 12,000 cases every year in UK

A higher body mass index (BMI) increases the risk of developing 10 of the most common cancers, the largest study of its kind on BMI and cancer, involving more than 5 million adults in the UK, shows. Each 5 kg/m² increase in BMI was clearly linked with higher risk of cancers of the uterus (62% increase), gallbladder (31%), kidney (25%), cervix (10%), thyroid (9%), and leukemia (9%). Higher BMI also increased the overall risk of liver, colon, ovarian, and breast cancers.

Using data from general practitioner records in the UK's Clinical Practice Research Datalink (CPRD), the researchers identified 5·24 million individuals aged 16 and older who were cancer-free and had been followed for an average of 7·5 years. The risk of developing 22 of the most common cancers, which represent 90% of the cancers diagnosed in the UK, was measured according to BMI after adjusting for individual factors such as age, sex, smoking status, and socioeconomic status. A total of 166 955 people developed one of the 22 cancers studied over the follow-up period. BMI was associated with 17 out of the 22 specific types of cancer examined.

Each 5 kg/m² increase in BMI was clearly linked with higher risk of cancers of the uterus (62% increase), gallbladder (31%), kidney (25%), cervix (10%), thyroid (9%), and leukemia (9%). Higher BMI also increased the overall risk of liver (19% increase), colon (10%), ovarian (9%), and breast cancers (5%), but the effects on these cancers varied by underlying BMI and by individual-level factors such as sex and menopausal status. Even within normal BMI ranges, higher BMI was associated with increased risk of some cancers.

There was some evidence that those with high BMI were at a slightly reduced risk of prostate cancer and premenopausal breast cancer. Based on the results, the researchers estimate that excess weight could account for 41% of uterine and 10% or more of gallbladder, kidney, liver, and colon cancers in the UK.

I've always recommended that people eat as many unprocessed foods as possible, and that one should always read the ingredient list when buying processed and prepared foods. The Center for Science in the Public Interest strongly urges that people avoid the following food ingredients: aspartame, food dyes, mycoprotein (Quorn), and partially hydrogenated oils (trans fat). The following article may be an eye opener for those who think that the FDA (Food and Drug Administration) carefully regulates what goes into our food. Link to the full article to read all the health concerns with mycoprotein (Quorn), Epigllocatechin-3-gallate (EGCG), and carageenan. From The Washington Post:

Food additives on the rise as FDA scrutiny wanes

The explosion of new food additives coupled with an easing of oversight requirements is allowing manufacturers to avoid the scrutiny of the Food and Drug Administration, which is responsible for ensuring the safety of chemicals streaming into the food supply.

And in hundreds of cases, the FDA doesn’t even know of the existence of new additives, which can include chemical preservatives, flavorings and thickening agents, records and interviews show. “We simply do not have the information to vouch for the safety of many of these chemicals,” said Michael Taylor, the FDA’s deputy commissioner for food.

The FDA has received thousands of consumer complaints about additives in recent years, saying certain substances seem to trigger asthmatic attacks, serious bouts of vomiting, intestinal-tract disorders and other health problems.

At a pace far faster than in previous years, companies are adding secret ingredients to everything from energy drinks to granola bars. But the more widespread concern among food-safety advocates and some federal regulators is the quickening trend of companies opting for an expedited certification process to a degree never intended when it was established 17 years ago to, in part, help businesses.

A voluntary certification system has nearly replaced one that relied on a more formal, time-consuming review — where the FDA, rather than companies, made the final determination on what is safe. The result is that consumers have little way of being certain that the food products they buy won’t harm them“We aren’t saying we have a public health crisis,” Taylor said. “But we do have questions about whether we can do what people expect of us.”

In the five decades since Congress gave the FDA responsibility for ensuring the safety of additives in the food supply, the number has spiked from 800 to more than 9,000, ranging from common substances such as salt to new green-tea extracts. This increase has been driven largely by demand from busy Americans, who get more than half their daily meals from processed foods, according to government and industry records. 

Within the past six months, top officials at the FDA and in the food industry have acknowledged that new steps must be taken to better account for the additives proliferating in the food supply. 

For new, novel ingredients — or when approved additives are used in new ways — the law says companies should seek formal FDA approval, which must be based on rigorous research proving the additive is safe. The agency uses the phrase “food additive,” in a narrow legal sense, to apply to substances that get this approval.

But many other additives are common food ingredients — vinegar is considered a classic example. The law allows manufacturers to certify, based on research, that such ingredients are already Generally Recognized as Safe, or GRASFor both types of additives, FDA scientists initially conducted detailed reviews of the company’s research. The agency also published its own evaluation of that research in the Federal Register.

This oversight system shifted dramatically in 1997. In response to a shortage of staff members and complaints from industry that the process was too cumbersome and did not improve food safety, the FDA proposed new rules. The agency told companies that were going the GRAS route — which turned a years-long process into one of months — that they no longer would have to submit their research and raw data. The companies can share just a summary of their findings with the agency.

The changes didn’t work out as planned. For starters, most additives continued to debut without the FDA being notified. Moreover, companies that did choose to go through the FDA oversight process largely abandoned the formal approval route, opting instead for the new, cursory GRAS process, even for additives that could be considered new and novel, according to agency documents and an analysis of those records by the Natural Resources Defense Council.

An average of only two additive petitions seeking formal approval are filed annually by food and chemical companies, while the agency receives dozens of GRAS notifications, according to an NRDC analysis of FDA data. Hundreds of other food chemicals and ingredients have been introduced without notifying the FDA at all, according to agency officials, trade journals and food safety groups.

Companies often bypass the FDA altogether. Under the rules, companies may make their own GRAS determination. Sharing it with the agency and getting it to sign off is voluntary. This is the opposite of what the overisght law intended, the FDA’s Taylor said. 

Even when the FDA approves a new additive or signs off on a company’s GRAS determination, a safe ingredient can turn dangerous if its use becomes more widespread than the agency envisioned. And under the rules, the agency has little way of monitoring this threat after the initial introduction of the additive, called “post-market.”

During the initial review, the FDA sets limits for how much of a chemical or ingredient can be used in a particular product. But the cumulative consumption can soar as the additive is used in more and more types of food and beverages.

Even though you may want to avoid phthalates, it is very hard to avoid them because they are commonly found in plastic food and beverage containers, perfume, hair spray, deodorants, almost anything fragranced (shampoo, air fresheners,etc.), insect repellent, carpeting, vinyl flooring, plastic toys, the steering wheel in cars, soft tubing in medical devices, etc. From Science Daily:

Reduced testosterone tied to endocrine-disrupting chemical exposure

Men, women and children exposed to high levels of phthalates -- endocrine-disrupting chemicals found in plastics and some personal care products -– tended to have reduced levels of testosterone in their blood compared to those with lower chemical exposure, according to a new study.

Testosterone is the main sex hormone in men. It contributes to a variety of functions in both sexes, including physical growth and strength, brain function, bone density and cardiovascular health. In the last 50 years, research has identified a trend of declining testosterone in men and a rise in related health conditions, including reduced semen quality in men and genital malformations in newborn boys.

Animal and cellular studies have found that some phthalates block the effects of testosterone on the body's organs and tissues. Researchers set out to examine whether these chemicals, which are widely used in flexible PVC plastics and personal care products, had a similar effect in humans.

"We found evidence reduced levels of circulating testosterone were associated with increased phthalate exposure in several key populations, including boys ages 6-12, and men and women ages 40-60," said one of the study's authors, John D. Meeker, MS, ScD, of the University of Michigan School of Public Health in Ann Arbor, MI. "This may have important public health implications, since low testosterone levels in young boys can negatively impact reproductive development, and in middle age can impair sexual function, libido, energy, cognitive function and bone health in men and women."

The cross-sectional study examined phthalate exposure and testosterone levels in 2,208 people who participated in the U.S. National Health and Nutrition Examination Survey, 2011-2012. Researchers analyzed urine samples to measure concentrations of 13 substances left after the body metabolizes phthalates. Each participant's testosterone level was measured using a blood sample.

Researchers found an inverse relationship between phthalate exposure and testosterone levels at various life stages. In women ages 40-60, for example, increased phthalate concentrations were associated with a 10.8 to 24 percent decline in testosterone levels. Among boys ages 6-12, increased concentrations of metabolites of a phthalate called di-(2-ethylhexyl) phthalate, or DEHP, was linked to a 24 to 34.1 percent drop in testosterone levels.

Two new studies find problems when vitamin D levels are low. From Science Daily:

Low vitamin D levels linked to increased risks after noncardiac surgery

Patients with low blood levels of vitamin D are at increased risk of death and serious complications after noncardiac surgery, suggests a study. The researchers analyzed the relationship between vitamin D level and surgical outcomes in approximately 3,500 patients who underwent operations other than heart surgery between 2005 and 2011. Only patients who had available data on vitamin D levels around the time of surgery -- from three months before to one month afterward -- were included in the study.

Most patients did not meet the recommended 25-hydroxyvitamin D concentration of greater than 30 nanograms per milliliter (ng/mL). The median vitamin D level was 23.5 ng/mL -- more than 60 percent of patients were in the range of vitamin D insufficiency (10 to 30 ng/mL). Nearly 20 percent had vitamin D deficiency (less than 10 ng/mL).

"Higher vitamin D concentrations were associated with decreased odds of in-hospital mortality/morbidity," the researchers write. For each 5 ng/mL increase in 25-hydroxyvitamin D level, the combined risk of death, cardiovascular events, or serious infections decreased by seven percent.

From Science Daily:

Vitamin D deficiency may reduce pregnancy rate in women undergoing IVF

Women with a vitamin D deficiency were nearly half as likely to conceive through in vitro fertilization (IVF) as women who had sufficient levels of the vitamin, according to a new study. Long known for its role in bone health, vitamin D is a steroid hormone that is emerging as a factor in fertility.

Women who had sufficient levels of vitamin D were nearly twice as likely to conceive as their counterparts with vitamin D deficiency. Since women with sufficient levels of the hormone were more likely to produce top-quality embryos, researchers theorized vitamin D was involved in the production of quality eggs in the ovaries as well as the successful implantation of embryos in the uterus.

Excellent way to lower breast cancer risk. From Science Daily:

Postmenopausal breast cancer risk decreases rapidly after starting regular physical activity

Postmenopausal women who in the past four years had undertaken regular physical activity equivalent to at least four hours of walking per week had a lower risk for invasive breast cancer compared with women who exercised less during those four years, according to new data.

"Twelve MET-h [metabolic equivalent task-hours] per week corresponds to walking four hours per week or cycling or engaging in other sports two hours per week and it is consistent with the World Cancer Research Fund recommendations of walking at least 30 minutes daily," said Agnès Fournier, PhD, a researcher in the Centre for Research in Epidemiology and Population Health at the Institut Gustave Roussy in Villejuif, France. "So, our study shows that it is not necessary to engage in vigorous or very frequent activities; even walking 30 minutes per day is beneficial."

Postmenopausal women who in the previous four years had undertaken 12 or more MET-h of physical activity each week had a 10 percent decreased risk of invasive breast cancer compared with women who were less active. Women who undertook this level of physical activity between five and nine years earlier but were less active in the four years prior to the final data collection did not have a decreased risk for invasive breast cancer

"We found that recreational physical activity, even of modest intensity, seemed to have a rapid impact on breast cancer risk. However, the decreased breast cancer risk we found associated with physical activity was attenuated when activity stopped. As a result, postmenopausal women who exercise should be encouraged to continue and those who do not exercise should consider starting because their risk of breast cancer may decrease rapidly."

Fournier and colleagues analyzed data obtained from biennial questionnaires completed by 59,308 postmenopausal women who were enrolled in E3N, the French component of the European Prospective Investigation Into Cancer and Nutrition (EPIC) study. The mean duration of follow-up was 8.5 years, during which time, 2,155 of the women were diagnosed with a first primary invasive breast cancer.

I've posted on whether probiotics can be used to treat mental disorders (see Probiotics and Psychobiotics- Part 1 and 2). But this article poses the interesting reverse question of whether the microbes are engaging in "microbial manipulations"? From NY Times:

Our Microbiome May Be Looking Out for Itself

Your body is home to about 100 trillion bacteria and other microbes, collectively known as your microbiome. We’ve come to appreciate how beneficial our microbes are — breaking down our food, fighting off infections and nurturing our immune system. 

But in the journal Bioessays, a team of scientists has raised a creepier possibility. Perhaps our menagerie of germs is also influencing our behavior in order to advance its own evolutionary success — giving us cravings for certain foods, for example. Maybe the microbiome is our puppet master.

The idea that a simple organism could control a complex animal may sound like science fiction. In fact, there are many well-documented examples of parasites controlling their hosts. How parasites control their hosts remains mysterious. But it looks as if they release molecules that directly or indirectly can influence their brains.

Our microbiome has the biochemical potential to do the same thing. In our guts, bacteria make some of the same chemicals that our neurons use to communicate with one another, such as dopamine and serotonin. And the microbes can deliver these neurological molecules to the dense web of nerve endings that line the gastrointestinal tract.

A number of recent studies have shown that gut bacteria can use these signals to alter the biochemistry of the brain.Compared with ordinary mice, those raised free of germs behave differently in a number of ways. They are more anxious, for example, and have impaired memory.Adding certain species of bacteria to a normal mouse’s microbiome can reveal other ways in which they can influence behavior. Some bacteria lower stress levels in the mouse. When scientists sever the nerve relaying signals from the gut to the brain, this stress-reducing effect disappears.

Some experiments suggest that bacteria also can influence the way their hosts eat. Germ-free mice develop more receptors for sweet flavors in their intestines, for example. They also prefer to drink sweeter drinks than normal mice do. Scientists have also found that bacteria can alter levels of hormones that govern appetite in mice.

Different species of microbes thrive on different kinds of food. If they can prompt us to eat more of the food they depend on, they can multiply. Microbial manipulations might fill in some of the puzzling holes in our understandings about food cravings, Dr. Maley said. Scientists have tried to explain food cravings as the body’s way to build up a supply of nutrients after deprivation, or as addictions, much like those for drugs like tobacco and cocaine. But both explanations fall short.

Take chocolate: Many people crave it fiercely, but it isn’t an essential nutrient. And chocolate doesn’t drive people to increase their dose to get the same high. Perhaps, he suggests, the certain kinds of bacteria that thrive on chocolate are coaxing us to feed them.

John F. Cryan, a neuroscientist at University College Cork in Ireland who was not involved in the new study, suggested that microbes might also manipulate us in ways that benefited both them and us. “It’s probably not a simple parasitic scenario,” he said.

Research by Dr. Cryan and others suggests that a healthy microbiome helps mammals develop socially. Germ-free mice, for example, tend to avoid contact with other mice. That social bonding is good for the mammals. But it may also be good for the bacteria. “When mammals are in social groups, they’re more likely to pass on microbes from one to the other,” Dr. Cryan said.

If microbes do in fact manipulate us, Dr. Knight said, we might be able to manipulate them for our own benefit — for example, by eating yogurt laced with bacteria that would make use crave healthy foods. The most important thing to do now, Dr. Knight and other scientists said, was to run experiments to see if microbes really are manipulating us.

Sounds like exercising in moderation has health benefits for all people, while "to excess" can be problematic. From Science Daily:

Contrary to popular belief, more exercise is not always better

There is strong epidemiological evidence of the importance of regular physical activity, such as brisk walking and jogging, in the management and rehabilitation of cardiovascular disease and in lowering the risk of death from other diseases such as hypertension, stroke, and type 2 diabetes. The Physical Activity Guidelines for Americans recommends about 150 minutes per week of moderate-intensity exercise or about 75 minutes of vigorous-intensity exercise. But there is clear evidence of an increase in cardiovascular deaths in heart attack survivors who exercise to excess.

Paul T. Williams, PhD, of the Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, and Paul D. Thompson, MD, of the Department of Cardiology, Hartford Hospital, Hartford, CT, studied the relationship between exercise and cardiovascular disease-related deaths in about 2,400 physically active heart attack survivors. This study confirmed previous reports indicating that the cardiovascular benefits for walking and running were equivalent, as long as the energy expenditures were the same (although when walking, as compared to running, it will take about twice as long to burn the same number of calories).

Remarkable dose-dependent reductions in deaths from cardiovascular events of up to 65% were seen among patients who were running less than 30 miles or walking less than 46 miles per week. Beyond this point however much of the benefit of exercise was lost, in what is described as a reverse J-curve pattern.

In the same issue, investigators in Spain report on a meta-analysis of ten cohort studies aimed at providing an accurate overview of mortality in elite athletes. The studies included over 42,000 top athletes (707 women) who had participated in a range of sports including football, baseball, track and field, and cycling, including Olympic level athletes and participants in the Tour de France.

"What we found on the evidence available was that elite athletes (mostly men) live longer than the general population, which suggests that the beneficial health effects of exercise, particularly in decreasing cardiovascular disease and cancer risk, are not necessarily confined to moderate doses," comments senior investigator Alejandro Lucia, MD, PhD, of the European University Madrid, Spain. 

"Extrapolation of the data from the current Williams and Thompson study to the general population would suggest that approximately one out of twenty people is overdoing exercise," comments James H. O'Keefe, MD, from the Mid America Heart Institute in Kansas City, MO... Along with co-authors Carl "Chip" Lavie, MD, and Barry Franklin, PhD, he explains that "we have suggested the term 'cardiac overuse injury' for this increasingly common consequence of the 'more exercise is better' strategy." 

O'Keefe, Franklin and Lavie point out that a weekly cumulative dose of vigorous exercise of not more than about five hours has been identified in several studies to be the safe upper range for long-term cardiovascular health and life expectancy, and that it may also be beneficial to take one or two days a week off from vigorous exercise, and to refrain from high-intensity exercise on an everyday basis. They propose that individuals from either end of the exercise spectrum (sedentary people and over-exercisers) would probably reap long-term health benefits by changing their physical activity levels to be in the moderate range.

"For patients with heart disease, almost all should be exercising, and generally most should be exercising 30-40 minutes most days, but from a health stand-point, there is no reason to exercise much longer than that and especially not more than 60 minutes on most days," says Lavie, who is a cardiologist at the John Ochsner Heart and Vascular Institute, New Orleans, LA.