Skip to content

A recent study using mice, and following them for 4 generations, has implications for Americans who typically eat a low-fiber diet (average of 15 grams daily). Note that current dietary guidelines recommend that women should eat around 25 grams and men 38 grams daily of fiber. The researchers found that low-fiber diets not only deplete the complex microbial ecosystems residing in the gut, but can cause an irreversible loss of diversity within those ecosystems in as few as three or four generations.

This is because fiber feeds the millions of microbes in the gut - and so a fiber-rich diet can nourish a wide variety of gut microbes, but a low-fiber diet can only sustain a narrower community. As the generations went by, the rodents’ guts became progressively less diverse, as more and more species were extinguished. If the fourth-generation mice switched to high-fiber meals, some of the missing microbes rebounded, but most did not. It took a fecal transplant (mice style) to get back the missing microbes. From Science Daily:

Low-fiber diet may cause irreversible depletion of gut bacteria over generations

A study by Stanford University School of Medicine investigators raises concerns that the lower-fiber diets typical in industrialized societies may produce internal deficiencies that get passed along to future generations. The study, conducted in mice, indicates that low-fiber diets not only deplete the complex microbial ecosystems residing in every mammalian gut, but can cause an irreversible loss of diversity within those ecosystems in as few as three or four generations.

Once an entire population has experienced the extinction of key bacterial species, simply "eating right" may no longer be enough to restore these lost species to the guts of individuals in that population, the study suggests. Those of us who live in advanced industrial societies may already be heading down that path.

Bad news about ticks: the blacklegged ticks (Ixodes scapularis and the western Ixodes pacificus) that spread Lyme disease, are now reported in almost half of the counties in the U. S. Researchers found blacklegged ticks in 1,420 out of 3,110 counties in the continental U.S., or about 46% of counties, and found western blacklegged ticks in 111 counties, or about 4%. Combined, this is a 45% increase from 1998 when ticks were reported in 1,058 counties.Of course the tick-dense northeast is where Lyme disease is most common. Although the blacklegged tick is found from Florida to Minnesota, 95% of confirmed Lyme disease cases come from just 14 states in the northeast and upper Midwest. 

One interesting study that looked at reasons for these differences was published in PLOS ONE last year by parasitologist Isis Arsnoe and colleagues . They found that populations of blacklegged ticks behave differently in the north and the south United States. Nymphs of the blacklegged tick in the north are bolder and more active in seeking out hosts, a behavior known as questing. Arsnoe found that that tick nymphs originating from Wisconsin and Rhode Island were 20 times more likely to emerge from leaf litter, putting them in the path of passing humans, than nymphs from North or South Carolina. "Questing behavior is a key factor affecting the risk of tick bites." From Science Daily:

Ticks that transmit Lyme disease reported in nearly half of all US counties

Lyme disease is transmitted by the blacklegged tick (Ixodes scapularis) and the western blacklegged tick (Ixodes pacificus), and the range of these ticks is spreading, according to research published in the Journal of Medical Entomology.

Some symptoms of Lyme disease include fever, headache, and fatigue, all of which can be mistaken for the common flu, so medical personnel need to know where these ticks are found in order to make a correct diagnosis. Unfortunately, the range of blacklegged ticks had not been re-evaluated in nearly two decades, until now.

The team used surveillance methods similar to those used in 1998 so that they would be able to accurately judge the degree to which the distribution of these ticks had changed. Using the gathered data, they figured out which counties had established populations, which ones had one or more reports of a blacklegged ticks, and which ones had none.

They found that the blacklegged tick has been reported in more than 45% of  U.S. counties, compared to 30% of counties in 1998. Even more alarming, the blacklegged tick is now considered established in twice the number of counties as in 1998. Most of the geographic expansion of the blacklegged tick appears to be in the northern U.S., while populations in southern states have remained relatively stable. The range of the western blacklegged tick only increased from 3.4% to 3.6% of counties. (The study in J. of Medical Entomology)

This study found that greater intake of dietary nitrate and green leafy vegetables was associated with a 20 percent to 30 percent lower risk of primary open-angle glaucoma (POAG), which is the most common form of glaucoma. Glaucoma can lead to vision loss and even blindness (if left untreated).There is evidence that nitric oxide has a role in primary open-angle glaucoma, and that dietary intake of nitrates is beneficial. Green leafy vegetables (iceberg lettuce, romaine lettuce,  mustard, or chard, cooked spinach, and raw spinach) were found to be most beneficial, as well as kale and collard greens. Those who ate the most green leafy vegetables ate about 1.5 servings per day, versus .3 servings daily in the lowest intake group.

Dietary nitrate is predominately derived from green leafy vegetables, which contribute approximately 80% of nitrate intake. But they are found as well in other vegetables, such as beets and carrots. It should be pointed out that those who consumed the most dietary nitrate in this study also consumed more fruits and vegetables, and so also consumed more dietary carotenoids, vitamin C, vitamin E, flavonoids, folate, and vitamin A. Bottom line: try to eat fruits and vegetables daily, especially green leafy vegetables (e.g., a salad). From Science Daily:

Higher dietary nitrate, green leafy vegetable intake associated with lower risk of glaucoma

Greater intake of dietary nitrate and green leafy vegetables was associated with a 20 percent to 30 percent lower risk of primary open-angle glaucoma, according to a study published online by JAMA Ophthalmology.

Elevated intraocular pressure and impaired autoregulation of optic nerve blood flow are implicated in primary open-angle glaucoma (POAG; optic nerve damage from multiple possible causes that is chronic and progresses over time). Evidence suggests that nitrate or nitrite, precursors for nitric oxide, is beneficial for blood circulation. Jae H. Kang, Sc.D., of Brigham & Women's Hospital and Harvard Medical School, Boston, and colleagues evaluated the association between dietary nitrate intake, derived mainly from green leafy vegetables, and POAG. The researchers followed up participants biennially in the prospective cohorts of the Nurses' Health Study (63,893 women; 1984-2012) and the Health Professionals Follow-up Study (41,094 men; 1986-2012). Eligible participants were 40 years or older, were free of POAG, and reported eye examinations. Information on diet was updated with questionnaires.

During follow-up, 1,483 incident cases of POAG were identified. Participants were divided into quintiles (one of five groups) of dietary nitrate intake (quintile 5, approximately 240 mg/d; quintile 1, approximately 80 mg/d). The researchers found that greater intake of dietary nitrate and green leafy vegetables was associated with a 20 percent to 30 percent lower POAG risk; the association was particularly strong (40 percent-50 percent lower risk) for POAG with early paracentral visual field loss (a subtype of POAG linked to dysfunction in blood flow autoregulation). 

This study showed an association of eating lots of flavonoid rich foods (strawberries, blueberries, cherries, blackberries, red wine, apples, pears, and citrus products) and lower rates of erectile dysfunction. A higher intake of several flavonoids also reduces diabetes and cardiovascular disease risk. Keep in mind that erectile dysfunction is thought to be of vascular etiology (the cause) and so shares risk factors (such as hypertension, obesity, and smoking) with cardiovascular disease. Studies have shown that lifestyle factors such as plenty of exercise, being of normal weight, and a Mediterranean style diet rich in whole grains, fruit, vegetables, nuts, legumes, and olive oil was associated with both lower rates of erectile dysfunction and an improvement in erectile function in men. So don't focus just on the flavonoids, but on the whole lifestyle package. From Science Daily:

Blueberries, citrus fruits, red wine associated with reduced erectile dysfunction

Flavonoid-rich foods are associated with a reduced risk of erectile dysfunction -- according to a new collaborative study from the University of East Anglia (UEA) and Harvard University. Research published in The American Journal of Clinical Nutrition reveals that eating foods rich in certain flavonoids is associated with a reduced risk of erectile dysfunction in men, with the greatest benefit in those under 70. Of all the different flavonoids, Anthocyanins (found in blueberries, cherries, blackberries, radishes and blackcurrant), flavanones and flavones (found in citrus fruits) were found to offer the greatest benefits in preventing the condition.

It is already known that increased exercise can improve erectile function, but this research shows that eating a flavonoid-rich diet is as good for erectile function as briskly walking for up to five hours a week. The study also showed that a higher total fruit intake was associated with a 14 per cent reduction in the risk of erectile dysfunction. And that a combination of consuming flavonoid-rich foods with exercise can reduce the risk by 21 per cent.

More than 50,000 middle aged men were included in this large population based study. They were asked about their ability to have and maintain an erection sufficient for intercourse -- dating back to 1986. Data on dietary intake was also collected every four years.....More than one third of the men surveyed reported suffering new onset erectile dysfunction. But those who consumed a diet rich in anthocyanins, flavones and flavanones were less likely to suffer the condition.

Prof Cassidy said: "The top sources of anthocyanins, flavones and flavanones consumed in the US are strawberries, blueberries, red wine, apples, pears, and citrus products.""We also found that the benefits were strongest among younger men," she added. The team also looked at other lifestyle factors and found that men who consumed a high intake of anthocyanins and flavanones and who were also physically active had the lowest risk of erectile dysfunction.

The following article is interesting because it describes how microbes are high up in the sky riding air currents and winds to circle the earth, and eventually drop down somewhere. This is one way diseases can be spread from one part of the world to another. And the study looking at how antibiotic resistant bacteria are spread in the air from cattle feedlots has implications for how antibiotic resistance is spread. From Smithsonian:

Living Bacteria Are Riding Earth's Air Currents

Considering the prevailing winds, David J. Smith figured the air samples collected atop a dormant volcano in Oregon would be full of DNA signatures from dead microorganisms from Asia and the Pacific Ocean. He didn’t expect anything could survive the journey through the harsh upper atmosphere to the research station at the Mount Bachelor Observatory, at an elevation of 9,000 feet.

But when his team got to the lab with the samples, taken from two large dust plumes in the spring of 2011, they discovered a thriving bunch of hitchhikers. More than 27 percent of the bacterial samples and more than 47 percent of the fungal samples were still alive. Ultimately, the team detected about 2,100 species of microbes, including a type of Archea that had only previously been isolated off the coast of Japan. “In my mind, that was the smoking gun,“ Smith says. Asia, as he likes to say, had sneezed on North America.

 Microbes have been found in the skies since Darwin collected windswept dust aboard the H.M.S. Beagle 1,000 miles west of Africa in the 1830s. But technologies for DNA analysis, high-altitude collection and atmospheric modeling are giving scientists a new look at crowded life high above Earth. For instance, recent research suggests that microbes are hidden players in the atmosphere, making clouds, causing rain, spreading diseases between continents and maybe even changing climates.

"I regard the atmosphere as a highway, in the most literal sense of the term," Smith says. "It enables the exchange of microorganisms between ecosystems thousands of miles apart, and to me that’s a more profound ecological consequence we still have not fully wrapped our heads around."

Airborne microbes potentially have huge impacts on our planet. Some scientists attribute a 2001 foot-and-mouth outbreak in Britain to a giant storm in north Africa that carried dust and possibly spores of the animal disease thousands of miles north only a week before the first reported cases. Bluetongue virus, which infects domestic and wild animals, was once present only in Africa. But it's found now in Great Britain, likely the result of the prevailing winds.

In west Texas, researchers from Texas Tech University collected air samples upwind and downwind of ten cattle feedlots. Antibiotic resistant microbes were 4,000 percent more prevalent in the downwind samples. .... What's clear is there are far more viable microbes in far more inhospitable places than scientists expected.

New research that found that microbial communities vary between the sinuses in a person with chronic sinusitis. This is a result that many sinusitis sufferers already suspect based on their sinusitis symptoms. The researchers also found that bacterial communities in the sinuses vary between people with chronic sinusitis. It is frustrating though for me to read study after study where the researchers focus on describing the types of bacteria found in chronic sinusitis sufferers (and then just saying that the sinus microbiomes or community of microbes vary from person to person) rather than studies comparing the sinus microbiomes (bacteria and other microbes, such as fungi) between healthy individuals and sinusitis sufferers.

Since research finds that sinusitis sufferers have altered sinus microbiomes, then what would be really helpful now is finding more beneficial or keystone species (besides Lactobacillus sakei) that are needed for healthy sinus microbiomes. This would be an important step towards then adding (perhaps using a nasal spray) these missing microbes to the sinus microbiome. From Frontiers in Microbiology:

Bacterial communities vary between sinuses in chronic rhinosinusitis patients

ABSTRACT: Chronic rhinosinusitis (CRS) is a common and potentially debilitating disease characterized by inflammation of the sinus mucosa for longer than 12 weeks. Bacterial colonization of the sinuses and its role in the pathogenesis of this disease is an ongoing area of research. Recent advances in culture-independent molecular techniques for bacterial identification have the potential to provide a more accurate and complete assessment of the sinus microbiome, however there is little concordance in results between studies, possibly due to differences in the sampling location and techniques. This study aimed to determine whether the microbial communities from one sinus could be considered representative of all sinuses, and examine differences between two commonly used methods for sample collection, swabs and tissue biopsies. High-throughput DNA sequencing of the bacterial 16S rRNA gene was applied to both swab and tissue samples from multiple sinuses of 19 patients undergoing surgery for treatment of CRS. Results from swabs and tissue biopsies showed a high degree of similarity, indicating that swabbing is sufficient to recover the microbial community from the sinuses. Microbial communities from different sinuses within individual patients differed to varying degrees, demonstrating that it is possible for distinct microbiomes to exist simultaneously in different sinuses of the same patient. The sequencing results correlated well with culture-based pathogen identification conducted in parallel, although the culturing missed many species detected by sequencing. This finding has implications for future research into the sinus microbiome, which should take this heterogeneity into account by sampling patients from more than one sinus. It may also be of clinical importance, as determination of antibiotic sensitivities using culture of a swab from a single sinus could miss relevant pathogens that are localized to another sinus.

CRS can be a debilitating condition that is recalcitrant to treatment. Bacterial colonization of the sinuses is likely to play an important role in the pathogenesis and perpetuation of the disease; however different studies have yielded contrasting results with respect to which bacterial taxa are characteristic of the disease (ref). We observed bacterial communities dominated by different taxa in CRS patients; for example some have sinuses colonized primarily with Haemophilus, while others are dominated by Corynebacterium and Staphylococcus, or Pseudomonas. Some patients’ sinuses contain anaerobic bacteria such as Anaerococcus, Finegoldia, and Peptoniphilus, while these were absent from others. Indeed, our results have shown, for the first time, that it is possible for a patient to simultaneously have different bacterial communities in different sinuses, pointing to distinct, localized microbiomes within the same patient. Understanding this variation in the sinus microbiome could prove critical to the appropriate selection of treatments for CRS in the future.

The weighted unifrac distances between samples within patients (Figure 1) demonstrate that at least some CRS patients have substantial variation of bacterial communities between sinuses, although it is significantly smaller than the variation observed between different individuals. While this variation was related to abundance rather than the presence or absence of dominant community members, some of these variations were large: for example Corynebacterium sequences dominating the right sinuses of patient 003 (60.7 and 41.7% of all sequences), while the left sinuses had much smaller abundances (9.8 and 6.2%) and were dominated by the anaerobic bacteria Anaerococcus, Finegoldia  and Peptinophillus.

Could the bacteria described in this research be another probiotic or beneficial bacteria (besides Lactobacillus sakei) that helps protect against sinusitis? New research found that the harmless bacteria Corynebacterium accolens is "overrepresented" in children free of Streptococcus pneumoniae (pneumococcus) -  which commonly colonizes in children's noses (and that can live harmlessly as part of a healthy microbiome), but it is also an important infectious agent. Streptococcus pneumoniae is a major cause of pneumonia, septicemia, meningitis, otitis media (ear infections), and sinusitis in children and adults worldwide.

The researchers did an analysis on the microbes in the nasal passages of children and found that the nasopharyngeal (nostrils) microbiome was different in children with and without pneumococcal nasopharyngeal colonization. This revealed that Corynebacterium species and Dolosigranulum were "overrepresented" in children negative for pneumococcal colonization, whereas Streptococcus was "overrepresented" in children positive for Streptococcus  pneumoniae colonization.

The researchers found that higher numbers of  Corynebacterium accolens cells deter and limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium species. The researchers write that "there is direct antagonism" between Corynebacterium spp. and S. pneumoniae in the human nose. How do children get this beneficial bacteria? Interestingly, at 6 weeks of age, Corynebacterium species. and Dolosigranulum species are also "overrepresented" in the nasopharyngeal microbiota of breastfed infants compared to formula-fed infants. From Science Daily:

Good bacteria might help prevent middle ear infections, pneumonia

A new study is helping to shed more light on the important connections among the diverse bacteria in our microbiome. According to research published in mBio, scientists at Forsyth, led by Dr. Katherine P. Lemon, along with their collaborator at Vanderbilt University, have demonstrated that a harmless bacterium found in the nose and on skin may negatively impact the growth of a pathogen that commonly causes middle ear infections in children and pneumonia in children and older adults.

This study provides the first evidence that Corynebacterium accolens, a harmless bacterial species that commonly colonizes the nose, can help inhibit Streptococcus pneumoniae (S. pneumoniae) -- a major cause of pneumonia, meningitis, middle ear infection and sinusitis. According to the World Health Organization, S. pneumoniae leads to more than 1 million deaths each year, primarily in young children in developing countries. Although most people that host S. pneumoniae do not develop these infections, colonization greatly increases the risk of, and is a perquisite for, infection and transmission.

The study, titled, "Corynebacterium accolens (C. accolens) Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols," is published on January 5, 2016 in mBio. In this study, first-author Dr. Lindsey Bomar and her colleagues show that C. accolens are overrepresented in the noses of children that are not colonized by S. pneumoniae, which is commonly found in children's noses and can cause infection. In laboratory research, the team further found that C. accolens modifies its local habitat in a manner that inhibits the growth of S. pneumoniae by releasing antibacterial free fatty acids from representative host skin surface triacylglycerols. The team went on to identify the C. accolens enzyme needed for this. These results pave the way for potential future research to determine whether C. accolens might have role as a beneficial bacterium that could be used to control pathogen colonization.

A provocative and thought-provoking article in which the title says it all: Cancer screening has not been shown to 'save lives'. The following is from the Medscape analysis/reporting of the original British Medical Journal article and accompanying editorial ( BMJ. January 2016, Article, Editorial), and both the original and Medscape analysis are well worth reading. From Medscape:

Cancer Screening Has Not Been Shown to 'Save Lives'

Debates about cancer screening programs tend to focus on when to start, who to screen, and the frequency of screening. But some investigators are asking a far more provocative question: Do screening programs actually save lives?

We do not know the answer to that question, and would need to conduct massive clinical trials to find out, said Vinay K. Prasad, MD, MPH, assistant professor of medicine at the Oregon Health Sciences University in Portland."Proponents of cancer screening say that screening tests have been shown to save lives. What we're trying to show is that, strictly speaking, that's sort of an overstatement," he told Medscape Medical News.

In an analysis published online January 6 in the BMJ, Dr Prasad and his colleagues argue that although cancer screening might reduce cancer-specific mortality, it has not conclusively been shown to have an effect on overall mortality. The researchers go on to suggest that the harms of screening might actually contribute to overall mortality rates. These potential harms include false-positive results that lead to unnecessary biopsies or therapeutic interventions and overdiagnosis, in which treatment is delivered for a condition that is unlikely to affect patients during their natural lifespans.

"There are two chief reasons why cancer screening might reduce disease-specific mortality without significantly reducing overall mortality," the researchers write. "Firstly, studies may be underpowered to detect a small overall mortality benefit. Secondly, disease-specific mortality reductions may be offset by deaths due to the downstream effects of screening." "The bar to say that screening saves lives should be overall mortality, and we haven't met that bar," Dr Prasad told Medscape Medical News.

The rationale for cancer screening is based on the assumptions that screening will reduce deaths from cancer and that lowering cancer-specific deaths will decrease overall mortality. These assumptions remain unsupported by facts, Dr Prasad's team contends.

They illustrate this point with data from the National Lung Cancer Screening Trial (NLST). Although there was a 20% relative reduction in lung cancer deaths with low-dose CT screening, compared with chest x-ray, and a 6.7% relative reduction in overall mortality, the absolute reduction in risk for overall mortality was just 0.46%....The team also notes that "the benefit in lung cancer mortality of CT screening (estimated to avert over 12,000 lung cancer deaths in the United States annually) must be set against the 27,034 major complications (such as lung collapse, heart attack, stroke, and death) that follow a positive screening test."

The decision to undergo screening should be part of an informed discussion between the patient and clinician that takes into account personal preferences and the risks and benefits of screening. Dr Prasad explained. "Declining screening may be a reasonable and prudent choice for many people," the researchers write. "Doctors should be comfortable with whatever choice people make when they hear about all the potential benefits and the known harms," Dr Prasad added.

However, in an accompanying editorial, Gerd Gigerenzer, PhD, from the Max Planck Institute for Human Development in Berlin, argues that "rather than pouring resources into 'megatrials' with a small chance of detecting a minimal overall mortality reduction, at the additional cost of harming large numbers of patients, we should invest in transparent information in the first place." He explains that information about screening should be presented in a "fact box" that lays out the benefits and risks of mammography with numbers for how many women would be affected."It is time to change communication about cancer screening from dodgy persuasion into something straightforward," he concludes.

Richard L. Schilsky, MD, chief medical officer for the American Society of Clinical Oncology (ASCO), said that although, in general, ASCO supports cancer screening, "it's a very imperfect process....The often high variability in the natural history of many cancers has been the source of particular confusion and uncertainty surrounding screening, he noted. For example, there is little value in screening for aggressive cancers for which interventions are unlikely to make a difference in outcomes, no matter how early the disease can be detected. Conversely, "if the cancer is never going to kill you, no matter what the doctors do, then screening won't help either," he said. Additionally, there are some cancers for which treatments are sufficiently effective that they can be successfully managed whether they are diagnosed at an early or later stage. "When you consider all these factors, the number of individuals who will actually benefit from detecting a screen-detected cancer is very small," Dr Schilsky said.

This is an issue that a lot of women I've known over the years have wondered about: if a woman gets pregnant while on birth control pills (oral contraceptives) - and many women do - does it mean higher rates of birth defects? This study says NO to higher rates of major birth defects which is very reassuring, but it doesn't answer the issue of more subtle effects (e.g., behavioral effects) from the hormones in the contraceptives. From Medical Xpress:

Oral contraceptive use not associated with increased birth defects risk

Oral contraceptives taken just before or during pregnancy do not increase the risk of birth defects, according to a new study by researchers from Harvard T.H. Chan School of Public Health and the Statens Serum Institut in Denmark. They found that the prevalence of major birth defects was consistent (about 25 per 1,000 live births) across all pregnant women in the study population regardless of contraceptive use.

Even though oral contraceptives are more than 99% effective with perfect use, almost 10% of women become pregnant within their first year of use. Many more women will stop using oral contraceptives when planning a pregnancy and conceive within a few months. Little is known about the potential health effects to children from in utero exposure to the hormones in oral contraceptives.

....Charlton and colleagues were able to tap into a wealth of data collected from multiple Danish health registries between 1997 and 2011 and linked by the unique personal identification number assigned to all Denmark residents. The researchers looked at 880,694 live-born infants, and the health of these children at one-year follow-up. Oral contraceptive use was estimated based on the date of the mother's most recently filled prescription.  Among the women in the study population, a fifth had never used oral contraceptives before becoming pregnant, and more than two-thirds had stopped using oral contraceptives at least three months before becoming pregnant. Eight percent had discontinued use within three months of becoming pregnant, and 1%, or well over 10,000 women, had used oral contraceptives after becoming pregnant.

The prevalence of birth defects was consistent across each category of oral contraceptive use, and remained so when the researchers added in pregnancies that ended as stillbirths or induced abortions.

 The following research finds a link (it doesn't establish cause) - but these interesting associations with vitamin D keep popping up. The research looked at leukemia rates in 172 countries and found that living closer to the equator (and assumed to have higher levels of vitamin D due to sunlight exposure) is linked to lower levels of leukemia. By far the best source of vitamin D is sunshine (and not food). From Medical Xpress:

Researchers link higher risk of leukemia to low sunlight and vitamin D

Epidemiologists at University of California, San Diego School of Medicine report that persons residing at higher latitudes, with lower sunlight/ultraviolet B (UVB) exposure and greater prevalence of vitamin D deficiency, are at least two times at greater risk of developing leukemia than equatorial populations.

These results suggest that much of the burden of leukemia worldwide is due to the epidemic of vitamin D deficiency we are experiencing in winter in populations distant from the equator," said Cedric Garland, DrPH, adjunct professor in the Department of Family Medicine and Public Health and member of Moores Cancer Center at UC San Diego Health. "People who live in areas with low solar ultraviolet B exposure tend to have low levels of vitamin D metabolites in their blood," Garland said. "These low levels place them at high risk of certain cancers, including leukemia."

According to the American Cancer Society, 54,270 cases and 24,450 deaths from leukemia occur in the United States alone each year. There is no known way to prevent most types of leukemia, though some types may be prevented by avoiding high doses of ionizing radiation, exposure to the chemical benzene, smoking and certain types of chemotherapy.

The UC San Diego study analyzed age-adjusted incidence rates of leukemia in 172 countries from GLOBOCAN, an international agency for research on cancer that is part of the World Health Organization, comparing that information with cloud cover data from the International Satellite Cloud Climatology Project. The study follows similar investigations by Garland and colleagues of other cancers, including breast, colon, pancreas, bladder and multiple myeloma. In each study, they found that reduced UVB radiation exposure and lower vitamin D levels were associated with higher risks of cancer.

Leukemia rates were highest in countries relatively closer to the poles, such as Australia, New Zealand, Chile, Ireland, Canada and the United States. They were lowest in countries closer to the equator, such as Bolivia, Samoa, Madagascar and Nigeria.