Skip to content

The following study raises the question  of how to lower BPA levels in all people, not just children with autism spectrum disorder.

The absolute quickest and easiest is to buy (whenever possible) loose foods (fresh fruits, vegetables, breads, etc) or foods in glass containers (and not plastic bottles, jars, or containers), store food in glass, porcelain, or stainless steel containers, and microwave in glass dishes (and not plastic containers).

In other words, think glass and not plastic. This is because BPA is in polycarbonate containers or packaging.

Lower your use of canned foods and avoid soda in cans. This is because cans have a lining that contains BPA or a BPA substitute (and research suggests it has the same effects as BPA). By the way, clear cling wrap made from polyethylene is considered safe to wrap and store food in.

From Medical Express: New study links BPA exposure to autism spectrum disorder

A newly published study is the first to report an association between bisphenol-A (BPA), a common plasticizer used in a variety of consumer food and beverage containers, with autism spectrum disorder (ASD) in children. The study, by researchers at Rowan University School of Osteopathic Medicine (RowanSOM) and Rutgers New Jersey Medical School (NJMS), shows that BPA is not metabolized well in children with ASD. The research appears online in Autism Research.

"It has been suspected for a lot of years that BPA is involved in autism, but there was no direct evidence," said T. Peter Stein, of RowanSOM and the study's lead author. "We've shown there is a link. The metabolism of BPA is different in some children with autism than it is in otherwise healthy children."

The research team – which included Margaret Schluter and Robert Steer, of RowanSOM who were responsible for laboratory analysis, and child neurologist Xue Ming, of NJMS who recruited and ascertained the study populations – examined urine specimens from 46 children with ASD and 52 healthy control children for both free BPA and total BPA concentrations.

Like many chemicals, BPA becomes water soluble when it is bound to glucose in the liver – a process called glucuronidation. Conversion to a glucuronide and then excretion of the glucuronide in the urine is a major pathway for removing toxins from the body.

The researchers also conducted a metabolomic analysis to screen for all the chemicals found in the children's urine. The metabolomics analyses showed the mean number of statistically significant correlations between metabolites detected and total BPA excreted to be approximately three times greater with the ASD group than the controls, and the number of statistical significant correlations with fraction of BPA bound was approximately 15 times higher in the children with ASD (p<0.001).

"Other studies involving rodent data have shown that BPA functions as an endocrine disruptor, but ours is the first to show this in humans and the first to associate it to autism," Stein said. "The observations show that for some children there was a relationship between intermediary metabolism, the ability to conjugate BPA and symptoms of autism."

Although the study involves a relatively small number of subjects, Stein said, "The key point is that the study seems to link BPA to autism and creates an open area for further research. One implication of our study is that there might be a benefit to reducing BPA exposure for pregnant women and for children with autism."

Gut bacteria in children varies among different Asian countries. A recent study found that microbiota of 303 subjects could be classified into two main clusters: driven by Prevotella (P-type) or by Bifidobacterium/Bacteroides (BB-type).

The majority of children in China, Japan and Taiwan harbored Bifidobacterium/Bacteroides (BB type), whereas those from Indonesia and Khon Kaen in Thailand mainly harbored Prevotella (P-type). It was interesting in that even eating different types of rice result in different gut bacteria.

From Asian Scientist: Diet, Location And Your Kid’s Gut Bacteria

An Asia-wide study of the gut microbiota of primary school children has identified differences linked to diet and geographical location.  ...continue reading "Gut Bacteria of School Children In Different Asian Countries"

More than a year after California revised its flame retardant standards so that new furniture (the polyurethane foam in upholstered sofas, sofa beds, and chairs) does not have to use flame retardants, it is still hard to find out whether the furniture is flame retardant free. This is what I have experienced in the last few months - the store doesn't know and the manufacturer won't respond to emails.

The new furniture label should say TB 117-2013 , and then you still need to ask the retailer if there are flame retardants in the upholstered furniture. The new label means that the manufacturer does NOT have to use flame retardant chemicals anymore, but it does NOT mean they are chemical free. And flame retardants are still found in many baby products (car seats, bumpers, crib mattresses, strollers, nursing pillows, etc), some personal care products, and electronics. It's a buyer beware situation.

More and more research is finding health problems with flame retardants because they are "not chemically bound" to the products in which they are used - thus they escape over time, and get into us via the skin (dermal), inhalation (from dust), and ingestion (from certain foods and dust on our fingers). And because flame retardants are persistant, they bioaccumulate (they build up over time). They can be measured in our urine and blood.

Evidence suggests that flame retardants may be endocrine disruptors, carcinogenic, alter hormone levels, decrease semen quality in men, thyoid disruptors, and act as developmental neurotoxicants (when developing fetus is exposed during pregnancy)  so that children have lowered IQ and more hyperactivity behaviors.

How does one know if the foam in your furniture has flame retardants in it? Duke University will test it for free if you send them a small piece of the furniture's foam. http://sites.nicholas.duke.edu/superfund/whats-in-my-foam/ I originally read about this service a few months ago in The Atlantic,

From The Atlantic: How to Test a Couch for Toxins

It began with a smell. Kerri Duntley had just bought a pair of large, cream-colored couches....As the scent continued to fill her living room, Duntley asked herself a troubling question: What was causing the couches to smell like industrial chemicals? The answers weren’t easy to find. Duntley searched in web forums and even tried contacting the couches’ manufacturer. “I called and called and called,” she said. “They just would not give me the information.” She grew frustrated and began looking for new couches. It was then that she discovered an unusual service run by a Duke University lab.

The lab’s offer was simple. First, the lab instructed, wield a pair of scissors. Grab something made with polyurethane foam—say, a mattress or the innards of a couch cushion. Cut a small chunk from the foam. Wrap the surgical work in tinfoil, ziplock seal it and mail the crime-scene-looking evidence off to Durham, North Carolina. Wait up to 45 days, the lab said, and it’ll arrive: a report detailing toxic flame retardants embedded in the foam.

Duntley complied. When the results came back, she learned that her couch sample had tested positive for two flame retardants, including one that has proven harmful in animal studies, a finding that she called heartbreaking. Her experience points to a vast gap in safety information about consumer goods. With the U.S. government’s limited power to regulate chemicals, many consumers, like Duntley, are left to piece together their own crude health-risk assessments. That fabric softener? It may smell like the Elysian Fields, but what if its unlisted ingredients cause cancer? 

Government officials , academic researchers, the chemical industry and environmentalists agree: The U.S. system of chemical regulation is broken. But while the fight over reform continues in Washington, consumers remain blind to many of the chemicals that enter their homes.

Duke’s service is looking in its small way to change that. The lab—which offers anyone a free chemical analysis of polyurethane foam—has informed hundreds of Americans about their furniture’s toxicity. At the same time, the foam samples have given Duke’s team a large bank of crowdsourced research. By offering a free service to an anxious public, Duke’s scientists are gaining a clearer view of chemical manufacturing. And they’re learning just how much we don’t know about the chemicals that enter our homes.

Stapleton was part of a scientific cohort that found ingesting dust—say, getting our dusty hands on a burger—is by far our largest source of exposure to flame retardants; flame retardants aren’t chemically bound to their products, and so they attach themselves to airborne dust.

But what began in California soon became a de facto national standard, since furniture companies didn’t want to manufacture separate lines. Stapleton was interested to see how chemically saturated our furniture really is. So she and her colleagues asked families for samples of their baby products’ foam. After reviewing 101 samples from across thirteen states, Stapleton’s 2011 study reached a startling conclusion: Flame retardants accounted for about 5 percent of the products’ weight, and the chemicals were found in 80 percent of the samples.

Some of the chemicals were carcinogens. Others were from a chemical class known as polybrominated diphenyl ethers, or PBDEs, which have been linked to lower IQ scores, attention deficit hyperactivity disorder, and thyroid disorders. The most common flame retardant among the samples was tris (1,3-dichloroisopropyl)phosphate, or TDCPP, which researchers say is likely to harm the neurological development of infants. TDCPP, in fact, was used throughout the 1970s in children’s pajamas, until critical health research led manufacturers in 1977 to stop using it. Yet the chemical had reemerged in products like strollers and baby mattresses.

The lab offered to test some of these strangers’ furniture for free. But the requests kept coming. That’s when Stapleton and her colleagues decided to expand the scope of the testing and conceived of a free service for the public. They’d test anyone’s polyurethane foam for a suite of seven common flame retardants as something of a public service, since it would be funded by a federal grant (itself funded by taxpayer dollars). The service would also aid Stapleton’s research, offering a valuable stream of crowdsourced data about the chemicals used in furniture.

By crowdsourcing her research, Stapleton has also uncovered a flame retardant that academic literature has yet to identify. The flame retardant is a chlorinated organophosphate, like TDCPP, and its health effects are unknown, she said. Stapleton said that this recent discovery-by-accident followed the same pattern as her research on Firemaster 550, a popular flame retardant that replaced two widespread PBDEs after they were withdrawn from the market... But emerging research has raised concerns about Firemaster 550, too. One study from Boston University and Duke researchers found that the chemical mixture may cause obesity in humans. Stapleton found the same effect in rats.

Very exciting research. And it's the exact opposite advice that doctors used to tell parents - which was if there was a high risk for a specific allergy that ran in the family (peanuts, dogs, etc.) to have the young child try to avoid exposure to that item (or in the case of peanuts - until the age of 3). From NPR:

Feeding Babies Foods With Peanuts Appears To Prevent Allergies

Babies at high risk for becoming allergic to peanuts are much less likely to develop the allergy if they are regularly fed foods containing the legumes starting in their first year of life. That's according to a big new study released Monday involving hundreds of British babies. The researchers found that those who consumed the equivalent of about 4 heaping teaspoons of peanut butter each week, starting when they were between 4 and 11 months old, were about 80 percent less likely to develop a peanut allergy by their fifth birthday.

"This is certainly good news," says Gideon Lack of King's College London, who led the study. He presented the research at the annual meeting of the American Academy of Allergy, Asthma and Immunology. It was also published in The New England Journal of Medicine.

As many as 2 million U.S. children are estimated to be allergic to peanuts — an allergy that has been increasing rapidly in the United States, Britain and other countries in recent years. While most children who are allergic to peanuts only experience relatively mild symptoms, such as hives, some have life-threatening reactions that can include trouble breathing and heart problems.

Lack's study was launched after he noticed that Israeli kids are much less likely to have peanut allergies than are Jewish kids in Britain and the United States."My Israeli colleagues and friends and young parents were telling me, 'Look, we give peanuts to these children very early. Not whole peanuts, but peanut snacks,' " Lack says. Peanut snacks called Bamba, which are made of peanut butter and corn, are wildly popular in Israel, where parents give them to their kids when they're very young. That's very different from what parents do in Britain and the United States, where fears about food allergies have prompted many parents to keep their children away from peanuts, even though the American Academy of Pediatrics revised a recommendation to do so in 2008.

"That raised the question whether early exposure would prevent these allergies" by training babies' immune systems not to overreact to peanuts, Lack says. "It's really a very fundamental change in the way we're approaching these children." To try to find out, Lack and his colleagues got funding from the U.S. National Institutes of Health to launch a study. They found 640 babies who were at high risk for developing peanut allergies because they already had eczema or egg allergy. They asked half of the infants' parents to start feeding them Bamba, peanut butter, peanut soup or peanut in some other form before their first birthday and followed them for about five years.

"What we found was a very great reduction in the rate of peanut allergy," Lack says. About 17 percent of the kids who avoided peanuts developed peanut allergies, compared with only 3.2 percent of the kids who ate peanuts, the researchers reported.

Based on the findings, Lack thinks most parents should start feeding their babies peanut products as early as possible — not whole peanuts or globs of peanut butter, but peanut mixed in some other food to avoid any possible choking hazard."We've moved, really, 180 degrees from complete avoidance to we should give peanuts to young children actively," Lack says. Other allergy experts hailed the results as an important advance. "This is a major study — really what we would call a landmark study," says Scott Sicherer, who advises the American Academy of Pediatrics on allergies. 

U.S. government agencies (such as FDA) say phthalates are OK, but evidence is mounting that they definitely are not OK. It's impossible to totally avoid phthalates, but one can lower exposure amounts by eating whole unprocessed foods, not microwaving or storing food in plastic containers (best is glass), and read ingredient lists on labels, including personal care products. From Medical Xpress:

Plastics chemical tied to changes in boys' reproductive development

When expectant mothers are exposed to plastics chemicals called phthalates during the first trimester, their male offspring may have a greater risk of infertility later in life, a new study suggests.Boys exposed to the chemical diethylhexyl phthalate (DEHP) may be born with a significantly shorter anogenital distance than those not exposed to these chemicals. Anogenital distance is the distance between the anus and the genitals. A shorter anogenital distance has been linked to infertility and low sperm count, the researchers explained.

"We saw these changes even though moms' exposure to DEHP has dropped 50 percent in the past 10 years," said lead researcher Shanna Swan, a professor of preventive medicine and obstetrics, gynecology and reproductive medicine at the Icahn School of Medicine at Mount Sinai in New York City. "Therefore, we have not found a safe level of phthalate exposure for pregnant women," she contended.

Swan said that this study cannot prove that these boys will have fertility problems as adults or that DEHP causes these problems. However, animal studies have implicated the chemical in male reproductive problems. Based on the data from this study, Swan believes there is a strong association between exposure to DEHP and fertility in human males.

DEHP is used to soften plastics. Most exposure results from eating foods that pick up the chemical during processing, Swan said. "Since food is the largest source of DEHP for consumers, it is difficult for pregnant women to minimize exposure," she said. "Eating unprocessed food will likely help. However, eliminating DEHP from food really has to be done by food producers."The chemical is also found in medical tubing and in a variety of products, including flooring, wallpaper, lacquers and personal care products, Swan said.

For the study, Swan's team collected data on almost 800 pregnant women and their infants.Specifically, the researchers found that exposure in the womb to three types of DEHP was associated with a significantly shorter anogenital distance in boys, but not in girls.

A group representing the chemical industry took issue with the study, however. In a statement, the American Chemistry Council (ACC) stressed that the study only examined one type of phthalate, not all versions of the chemical... The ACC added that DEHP "is known to break down into its metabolites within minutes after it enters the body. 

But another expert says phthalate exposure may not be benign. Dr. Kenneth Spaeth, director of the Occupational and Environmental Medicine Center at North Shore University Hospital in Manhasset, N.Y., said, "virtually everyone in the U.S. experiences continual exposure to phthalates."And, a number of studies have tied the chemicals with changes in developing fetuses. "Phthalates, in particular, have been shown in both human and animal studies to interfere with normal fetal development," he said.

This study supports what has been demonstrated before, that phthalate exposure in the first trimester is linked to male reproductive development, Spaeth said. "This study is an important step forward in establishing this effect because the study included a much larger number of individuals than prior studies and helps identify one particular agent, DEHP, as an important contributor to this effect," he said.Additionally, this study shows the importance of exposure in the first trimester as a critical window for the effect of phthalates on the male reproductive system. 

Since people have abandoned using iodized salt and started using kosher salt or sea  salts, iodine deficiency has increased (especially during pregnancy when iodine needs are greater). The medical journal The Lancet noted in 2008: "According to World Health Organization, in 2007, nearly 2 billion individuals had insufficient iodine intake, a third being of school age. ... Thus iodine deficiency, as the single greatest preventable cause of mental retardation, is an important public-health problem." From Wikipedia : Iodine deficiency is the leading cause of preventable mental retardation, a result which occurs primarily when babies or small children are rendered hypothyroidic by a lack of the element. The addition of iodine to table salt has largely eliminated this problem in the wealthier nations. The article states that iodine deficiency typically lowers IQ by 10 to 15 points. So it's a big deal, a really big deal.  But don't overdo the iodine! Excess iodine also has serious problems.From Medscape:

New Recommendations Call for Iodine in All Prenatal Vitamins

Endocrinology groups are applauding a new recommendation from a dietary-supplement trade association that calls for iodine supplementation in all prenatal vitamins prescribed for pregnant and breastfeeding women.

In addition, the public health committee of the American Thyroid Association (ATA) recently published a statement reiterating the ATA recommendation that women take a daily multivitamin containing 150 μg of iodine during prepregnancy, pregnancy, and lactation. The statement also warns of the potential risks of excess iodine consumption and exposure, particularly through the use of unregulated kelp supplements.

The US Council for Responsible Medicine's new guidelines call for all dietary-supplement manufacturers and marketers to begin including at least 150 μg of iodine in all daily multivitamin/mineral supplements intended for pregnant and lactating women in the United States within the next 12 months.

In the past several years, removal of iodized salt from commercial products such as bread and milk, along with increased use of kosher salt and sea salt, which don't contain iodine, and the adoption of vegetarian and vegan diets have led to a reduction in dietary iodine consumption. "There never was a coherent US policy about iodization," Dr Stagnaro-Green noted.

Worldwide, about two billion people are iodine-deficient. While most of the US population has adequate iodine levels, data from the National Health and Nutrition Examination Survey suggest that more than half of pregnant women have urinary iodine concentrations below 150 mg/dL (Thyroid. 2011;21:419-427). 

Pregnant women actually need more iodine than other people because of increased thyroid-hormone production, renal losses, and fetal iodine requirements. Iodine deficiency during pregnancy can result in maternal and fetal goiter, cretinism, intellectual impairment, neonatal hypothyroidism, and increased pregnancy loss and mortality, Dr Stagnaro-Green and colleagues explained in a 2012 editorial (JAMA2012;308:2463-2464).

"So, women of childbearing age are the subpopulation of Americans with the lowest iodine levels yet have the greatest need during pregnancy and breastfeeding, for the neurodevelopment of the fetal and neonatal brain," he told Medscape Medical News. 

In 2009, a study found that only 51% of US prenatal multivitamin brands contained any iodine and, in a number of randomly selected brands, the actual dose of iodine contained in the supplements did not match values on the labeling.

However, the American College of Obstetricians and Gynecologists (ACOG) has not joined in these efforts. While the group does recommend the 150-μg dose for pregnant and lactating women, it does not currently endorse the prenatal-supplement recommendation, advising instead that women get their iodine through dietary sources.

In the ATA's public health committee statement, Angela M Leung, MD, from the University of California Los Angeles David Geffen School of Medicine, and colleagues, including Dr Stagnaro-Green, note that iodine is a micronutrient required for normal thyroid function. The US recommended daily allowances (RDA) for iodine intake are 150 μg in adults, 220 to 250 μg in pregnant women, and 250 to 290 μg in breastfeeding women. Dietary sources such as iodized salt, dairy products, some breads, and seafood usually contain enough to meet the RDA for most people who aren't pregnant or lactating.

However, there is an upper safety limit, with ingestion of more than 1100 μg/day not recommended due to the risk for thyroid dysfunction. In particular, infants, the elderly, pregnant and lactating women, and people with preexisting thyroid disease are at risk for adverse effects of excess iodine on the thyroid.

Many iodine, potassium iodide, and kelp supplements contain hundredfold greater amounts of iodine than the recommended upper limit, Leung and colleagues caution."Given the increasing popularity of iodine and kelp supplements, recommendations cautioning against excess iodine were indicated. The potential result of iodine-induced thyroid dysfunction, which may be particularly harmful during pregnancy and breastfeeding and in the elderly, may not be well-known," she told Medscape Medical News.

Another study that shows that differences in the gut microbiota appear early in life, and appear to be based on length of gestation (pregnancy) and type of delivery (vaginal vs C-section). From Science Daily:

Birth method, gestation duration may alter infants' gut microbiota

Environmental factors like mode of delivery and duration of gestation may affect how infants' gut bacteria mature, and that rate could help predict later body fat, international researchers have found.

Among a group of 75 infants, those who were vaginally delivered and had a longer gestation before birth tended to more quickly develop a more mature gut microbiota, and had typical body fat at 18 months. By contract, babies who were delivered via Caesarean section and had shorter gestations took longer to acquire a more mature gut microbiota and had lower body fat at 18 months.

"It seems like the early environment, for instance mode of delivery, mode of feeding, the duration of gestation and living environment may be influencing the rate at which babies acquire their gut microbiota," said senior study author Joanna Holbrook, a senior principal investigator at the Singapore Institute for Clinical Sciences, "and that in turn has an association with how babies grow and put on body fat."

At birth, human infants start accumulating intestinal microbiota until a relatively stable state is reached, Holbrook said. The rate at which babies acquire gut microbiota is believed to have a considerable impact on later health outcomes.

For the study, Holbrook and colleagues used a laboratory technique called 16s rRNA sequencing to analyze stool samples that had been collected from 75 infants participating in the GUSTO (Growing Up in Singapore Toward Healthy Outcomes) study, which includes members of the three main ethnic groups in Singapore: Chinese, Indian and Malay. The samples were taken when the infants were three days old, three weeks old, three months old and six months old. 

Their work found that the samples could be classified into three distinct clusters based on when infants' gut microbiota matured. Of 17 infants who had a more mature, six month-like microbiota profile high in the bacteria Bifidobacterium and Collinsella by day three, 16 were delivered vaginally. Other babies took up to six months to reach that stage.

Most infants acquired a similar microbiota by the age of six months. Infants that acquired a profile high in Bifidobacterium and Collinsella at an earlier age had typical body fat at age 18 months, while those that acquired this profile later had relatively low body fat.

Very important research looking at some professional football players who started playing tackle football before the age of 12, and comparing them to those who started later. It discusses the issue of whether children should be playing tackle football before the age of 12 - these and other results suggest NOT. Wait till older (or don't play tackle at all).This article came from Boston University through Futurity:

Is This Kid Too Young For Football?

Researchers from Boston University School of Medicine found that former National Football League (NFL) players who participated in tackle football before the age of 12 are more likely to have memory and thinking problems as adults.

The study contradicts conventional wisdom that children’s more plastic brains might recover from injury better than those of adults, and suggests that they may actually be more vulnerable to repeated head impacts, especially if injuries occur during a critical period of growth and development. "

“This is one study, with limitations,” adds study senior author Robert Stern, a professor of neurology, neurosurgery, and anatomy and neurobiology and director of the Alzheimer’s Disease Center’s Clinical Core. “But the findings support the idea that it may not make sense to allow children—at a time when their brain is rapidly developing—to be exposed to repetitive hits to the head.

In the study, researchers reexamined data from Boston University’s ongoing DETECT(Diagnosing and Evaluating Traumatic Encephalopathy Using Clinical Tests) study, which aims to develop methods of diagnosing chronic traumatic encephalopathy (CTE) during life. CTE is a neurodegenerative disease often found in professional football players, boxers, and other athletes who have a history of repetitive brain trauma. It can currently be diagnosed only by autopsy.

For this latest study, published in the journal Neurology, scientists examined test scores of 42 former NFL players, with an average age of 52, all of whom had experienced memory and thinking problems for at least six months. Half the players had played tackle football before age 12, and half had not. Significantly, the total number of concussions was similar between the two groups.

Researchers found that the players exposed to tackle football before age 12 had greater impairment in mental flexibility, memory, and intelligence—a 20 percent difference in some cases. These findings held up even after statistically removing the effects of the total number of years the participants played football. Both groups scored below average on many of the tests.

Stamm says the researchers were especially surprised by the scores on a reading test called the WRAT-4, which has participants read words of increasing difficulty....The low scores may be significant, she says, because they suggest that repeated head trauma at a young age might limit peak intelligence. She emphasizes, however, that there may be other reasons for a low score, and that more research is needed.

The authors chose age 12 as the cutoff because significant peaks in brain development occur in boys around that age. (This happens for girls a bit earlier, on average.) Around age 12, says Stern, blood flow to the brain increases, and brain structures such as the hippocampus, which is critical for memory, reach their highest volume.

Boys’ brains also reach a peak in their rate of myelination—the process in which the long tendrils of brain cells are coated with a fatty sheath, allowing neurons to communicate quickly and efficiently. Because of these developmental changes, Stern says, this age may possibly represent a “window of vulnerability,” when the brain may be especially sensitive to repeated trauma.

Stern adds that a study by another group of researchers of the number and severity of hits in football players aged 9 to 12, using accelerometers in helmets, found that players received an average of 240 high-magnitude hits per season, sometimes with a force similar to that experienced by high school and college players.

With approximately 4.8 million athletes playing youth football in the United States, the long-term consequences of brain injury represent a growing public health concern. This study comes at a time of increasing awareness of the dangers of concussions—and subconcussive hits—in youth sports like football, hockey, and soccer. In 2012, Pop Warner football, the oldest and largest youth football organization in the country, changed its rules to limit contact during practices and banned intentional head-to-head contact. 

“Football has the highest injury rate among team sports,” writes Christopher M. Filley, a fellow with the American Academy of Neurology, in an editorial accompanying the Neurology article. “Given that 70 percent of all football players in the United States are under the age of 14, and every child aged 9 to 12 can be exposed to 240 head impacts during a single football season, a better understanding of how these impacts may affect children’s brains is urgently needed.”

This study is important because it shows (once again) that spatial skills may be developed by what a child does in childhood. The trend for girls to only be given dolls or stereotypically "girl" toys is not that good for mental development (but good for nurturing). All children need to play with blocks, puzzles, and to create and build. They all need to go out and actively explore their environment, which also is good for developing spatial reasoning skills (as shown by earlier research). Think about it: when you actively explore the streets and land around you, you develop "mental maps" of how to get around, and this is good for spatial skills. Bottom line: encourage both boys and girls to build, create, do puzzles, play board games, and explore their outside environment. From Science Daily:

Playing with puzzles, blocks may build children's spatial skills

Play may seem like fun and games, but new research shows that specific kinds of play are actually associated with development of particular cognitive skills. Data from an American nationally representative study show that children who play frequently with puzzles, blocks, and board games tend to have better spatial reasoning ability.

"Our findings show that spatial play specifically is related to children's spatial reasoning skills," says psychological scientist and lead researcher Jamie Jirout of Rhodes College. "This is important because providing children with access to spatial play experiences could be a very easy way to boost spatial development, especially for children who typically have lower performance, such as girls and children from lower-income households."

Being able to reason about space, and how to manipulate objects in space, is a critical part of everyday life, helping us to navigate a busy street, put together a piece of "some assembly required" furniture, even load the dishwasher. And these skills are especially important for success in particular academic and professional domains, including science, technology, engineering, and math (STEM).

Jirout and Newcombe analyzed data from 847 children, ages 4 to 7, who had taken the revised WPPSI [Wechsler Preschool and Primary Scale of Intelligence], which included measures of cognitive skills that contribute to general intelligence. The children's spatial ability was specifically measured via the commonly-used Block Design subtest of the WPPSI, in which children are asked to reproduce specific 2D designs using cubes that have red, white, and half-red/half-white faces. The researchers also examined survey data from parents about the children's play behavior and joint parent-child activities.

The data revealed that family socioeconomic status, gender, and general intelligence scores were all associated with children's performance on the block design task. Children from the low-socioeconomic status group tended to have lower block design scores compared to children from either the middle- or high-socioeconomic status groups. And boys tended to have higher block design scores than did girls, though only after several other cognitive abilities, such as vocabulary, working memory, and processing speed, were taken into account.

Importantly, how often children played with certain toys was also tied to their spatial reasoning skills. Children who played with puzzles, blocks, and board games often (more than six times per week) had higher block design scores than did children who played with them sometimes (three to five times per week), or rarely/never.

None of the other types of play (e.g., drawing, playing with noise-making toys, and riding a bicycle, skateboard, or scooter) or the parent-child activities (e.g., teaching number skills, teaching shapes, playing math games, telling stories) included in the survey data were associated with children's spatial ability.

In line with previous findings, parents reported that boys engaged in spatial play -- playing with puzzles, blocks, and board games -- more often than girls, even after spatial ability was taken into account.

An amazing breakthrough for those suffering from peanut allergies. The bacteria Lactobacillus rhamnosus is added to some yogurts and kefir, but in smaller amounts.From The Telegraph:

Fatal peanut allergies could be cured by probiotic bacteria, say Australian doctors

A strain of probiotic bacteria could offer a cure for potentially fatal peanut allergies, according to scientists in Australia. The breakthrough followed a trial in which a group of children were given increasing amounts of peanut flour, along with a probiotic called Lactobacillus rhamnosus, over an 18-month period. About 80 per cent of the children who had peanut allergies were subsequently able to tolerate peanuts.

Mimi Tang, the lead researcher, said the families involved believed the treatment had "changed their lives". "These findings provide the vital first step towards developing a cure for peanut allergy and possibly for all food allergies," she told Melbourne's Herald Sun.

The randomised trial, involving a group of about 30 children, was conducted by Murdoch Childrens Research Institute in Melbourne. The children, aged one to ten, were given small amounts of peanut flour, gradually building up to two grams, or the equivalent of six or seven nuts.They were also given daily doses of Lactobacillus rhamnosus, which is found in yoghurt but was given in quantities equivalent to the amount found in 44 pounds of yoghurt.

Following the treatment, about 80 per cent of the children were able to tolerate four grams of peanut protein, equivalent to about 14 peanuts. Typically, about four per cent of children would have overcome their peanut allergy during this time.

Rates of peanut allergies have dramatically increased in the past two decades, particularly in developed countries. For most sufferers, the condition is lifelong.

A link to the press release from the Murdoch Childrens Research Institute (their researchers are doing the research), has more:

Oral Therapy Could Provide Treatment For Peanut Allergies

Over 60 peanut allergic children in the study were either given a dose of a probiotic, Lactobacillus rhamnosus, together with peanut protein in increasing amounts, or a placebo over 18 months to assess whether children would become tolerant to peanut.

The probiotic was a fixed daily dose, while the peanut oral immunotherapy was a daily dose of peanut protein starting at very low doses followed by a dose increase every two weeks until the maintenance dose (2 grams peanut protein) was reached. At the end of the treatment, the child's ability to tolerate peanut was assessed by a peanut challenge performed two to five weeks after stopping treatment.

23 of 28 (82.1%) probiotic treated children and one of 28 (3.6%) placebo-treated children were able to include peanut in their diet at the end of the trial. The likelihood of success was high - if nine children were given probiotic and peanut therapy, seven would benefit.

The need for a curative treatment is greatest for peanut allergy since this is usually lifelong, and is the most common cause of fatality due to food induced anaphylaxis. Further research is now required to confirm whether patients can still tolerate peanut years after the study has finished.