Skip to content

More long-term benefits from breastfeeding. The first study finds that long-term it's as good or better than statins! From Science Daily:

Birthweight and breastfeeding have implications for children's health decades later

Young adults who were breastfed for three months or more as babies have a significantly lower risk of chronic inflammation associated with cardiovascular and metabolic diseases, according to research from the Brown School at Washington University in St. Louis.

"This study shows that birthweight and breastfeeding both have implications for children's health decades later," said Molly W. Metzger, PhD, assistant professor at the Brown School and a co-author of the study with Thomas W. McDade, PhD, of Northwestern University.

"Specifically, we are looking at the effects of these early factors on later levels of C-reactive protein (CRP), a biomarker associated with risk for cardiovascular and metabolic disease," Metzger said. "Comparing the long-term effects of breastfeeding to the effects of clinical trials of statin therapy, we find breastfeeding to exert effects that are as large or larger."

The researchers used data from the U.S. National Longitudinal Study of Adolescent Health, including parent surveys, and blood samples providing measurements of CRP. These findings held up in a series of sibling models, in which one sibling was breastfed and the other was not. Such models provide improved confidence in the results by implicitly controlling for genetic factors for elevated CRP.

This study was published a year ago (Aug. 2013) and shows a long-term benefit to the mother (reduced Alzheimer's risk) of breastfeeding. From Science Daily:

Breastfeeding may reduce Alzheimer's risk

Mothers who breastfeed their children may have a lower risk of developing Alzheimer's Disease, with longer periods of breastfeeding also lowering the overall risk, a new study suggests.

The report, newly published in the Journal of Alzheimer's Disease, suggests that the link may be to do with certain biological effects of breastfeeding. For example, breastfeeding restores insulin tolerance which is significantly reduced during pregnancy, and Alzheimer's is characterised by insulin resistance in the brain.

Study after study is suggesting that exposure to lots of diverse bacteria and microorganisms (think farms with animals) is healthy for the developing immune system. From Science Daily:

Growing up on livestock farm halves risk of inflammatory bowel diseases

New research conducted at Aarhus University has revealed that people who have grown up on a farm with livestock are only half as likely as their urban counterparts to develop the most common inflammatory bowel diseases: ulcerative colitis and Crohn's disease

"It is extremely exciting that we can now see that not only allergic diseases, but also more classic inflammatory diseases appear to depend on the environment we are exposed to early in our lives," relates Vivi Schlünssen, Associate Professor in Public Health at Aarhus University.

"We know that development of the immune system is finalized in the first years of our lives, and we suspect that environmental influences may have a crucial effect on this development. The place where you grow up may therefore influence your risk of developing an inflammatory bowel disease later in life."

However, the researchers have a theory that the body may be dependent on exposure to a wide variety of microorganisms to develop a healthy immune system -- in the same way as has been established in studies on allergies and asthma.

"We know that the difference in the microbial environment between city and country has increased over the past century, and that we are exposed to far fewer different bacteria in urban environments today than we were previously. This may in part explain our findings," says Signe Timm.

Over the past 40-50 years, incidence of the diseases has sky-rocketed in Northern Europe -- including Denmark -- as well as in Canada and the United States, although they are still relatively rare in developing countries.

Obviously children on farms are exposed to a lot of dirt and animals, both teaming with microorganisms. But I wonder, and it's not discussed, is whether people living on dairy farms are drinking raw milk, which contains lots of microorganisms. After all, the point of milk pasteurization is to kill off bacteria. Will we go back to drinking raw milk to try to prevent allergies? From Science Daily:

Children on dairy farms run one-tenth the risk of developing allergies; Dairy farm exposure also beneficial during pregnancy

Children who live on farms that produce milk run one-tenth the risk of developing allergies as other rural children. According to researchers at The University of Gothenburg in Sweden, pregnant women may benefit from spending time on dairy farms to promote maturation of the fetal and neonatal immune system.

The occurrence of allergic diseases has risen dramatically in Western societies. One frequently cited reason is that children are less exposed to microorganisms and have fewer infections than previous generations, thereby delaying maturation of the immune system.

A study by researchers at Sahlgrenska Academy, University of Gothenburg, monitored children until the age of three to examine maturation of the immune system in relation to allergic disease. All of the children lived in rural areas of the Västra Götaland Region, half of them on farms that produced milk. The study found that children on dairy farms ran a much lower risk of developing allergies than the other children.

"Our study also demonstrated for the first time that delayed maturation of the immune system, specifically B-cells, is a risk factor for development of allergies," says Anna-Carin Lundell, one of the researchers. Children with an allergic disease at the age of 18 and 36 months had a higher percentage of immature B-cells in their blood circulation at birth and during the first month of life. 

"We need to identify the specific factors on dairy farms that strengthen protection against allergies and appear to promote maturation of the immune system as early as the fetal stage," Ms. Lundell says.

The researchers of this study looked at proximity to farm fields (how close a pregnant woman lives to a farm) and certain farm pesticides and found a link between exposure to farm pesticides during pregnancy and having a child with autism. But too bad they didn't also include pesticide exposures from homes (for pest control), gardens, and yards which would have given a more accurate measure of total exposure. However, it's a start. From Science Daily:

Association found between maternal exposure to agricultural pesticides and autism

Pregnant women who lived in close proximity to fields and farms where chemical pesticides were applied experienced a two-thirds increased risk of having a child with autism spectrum disorder or other developmental delay, a study by researchers with the UC Davis MIND Institute has found. The associations were stronger when the exposures occurred during the second and third trimesters of the women's pregnancies.

The large, multisite California-based study examined associations between specific classes of pesticides, including organophosphates, pyrethroids and carbamates, applied during the study participants' pregnancies and later diagnoses of autism and developmental delay in their offspring. It is published online in Environmental Health Perspectives. "... the message is very clear: Women who are pregnant should take special care to avoid contact with agricultural chemicals whenever possible."

California is the top agricultural producing state in the nation, grossing $38 billion in revenue from farm crops in 2010. Statewide, approximately 200 million pounds of active pesticides are applied each year, most of it in the Central Valley, north to the Sacramento Valley and south to the Imperial Valley on the California-Mexico border. While pesticides are critical for the modern agriculture industry, certain commonly used pesticides are neurotoxic and may pose threats to brain development during gestation, potentially resulting in developmental delay or autism.

The study was conducted by examining commercial pesticide application using the California Pesticide Use Report and linking the data to the residential addresses of approximately 1,000 participants in the Northern California-based Childhood Risk of Autism from Genetics and the Environment (CHARGE) Study. The study includes families with children between 2 and 5 diagnosed with autism or developmental delay or with typical development. "We mapped where our study participants' lived during pregnancy and around the time of birth. In California, pesticide applicators must report what they're applying, where they're applying it, dates when the applications were made and how much was applied," Hertz-Picciotto said. "What we saw were several classes of pesticides more commonly applied near residences of mothers whose children developed autism or had delayed cognitive or other skills."

Organophosphates applied over the course of pregnancy were associated with an elevated risk of autism spectrum disorder, particularly for chlorpyrifos applications in the second trimester. Pyrethroids were moderately associated with autism spectrum disorder immediately prior to conception and in the third trimester. Carbamates applied during pregnancy were associated with developmental delay.

Exposures to insecticides for those living near agricultural areas may be problematic, especially during gestation, because the developing fetal brain may be more vulnerable than it is in adults. Because these pesticides are neurotoxic, in utero exposures during early development may distort the complex processes of structural development and neuronal signaling, producing alterations to the excitation and inhibition mechanisms that govern mood, learning, social interactions and behavior.

From Medical Xpress:

Estimated risk of breast cancer increases as red meat intake increases

Higher red meat intake in early adulthood might be associated with an increased risk of breast cancer, and women who eat more legumes—such as peas, beans and lentils—poultry, nuts and fish might be at lower risk in later life, suggests a paper published BMJ today.

So far, studies have suggested no significant association between  intake and breast cancer. However, most have been based on diet during midlife and later, and many lines of evidence suggest that some exposures, potentially including dietary factors, may have greater effects on the development of breast cancer during early adulthood.

So a team of US researchers investigated the association between dietary protein sources in early adulthood and risk of breast cancer. They analysed data from 88,803 premenopausal women (aged 26 to 45) taking part in the Nurses' Health Study II who completed a questionnaire on diet in 1991. Adolescent food intake was also measured and included foods that were commonly eaten from 1960 to 1980, when these women would have been in high school. 

Medical records identified 2,830 cases of breast cancer during 20 years of follow-up.

This translated to an estimate that higher intake of red meat was associated with a 22% increased risk of breast cancer overall. Each additional serving per day of red meat was associated with a 13% increase in risk of breast cancer (12% in premenopausal and 8% in postmenopausal women).

In contrast, estimates showed a lower risk of breast cancer in postmenopausal women with higher consumption of poultry. Substituting one serving per day of poultry for one serving per day of red meat - in the statistical model - was associated with a 17% lower risk of breast cancer overall and a 24% lower risk of postmenopausal breast cancer.

Furthermore, substituting one serving per day of combined legumes, nuts, poultry, and fish for one serving per day of red meat was associated with a 14% lower risk of breast cancer overall and premenopausal breast cancer.

The authors conclude that higher red meat intake in early adulthood "may be a risk factor for breast cancer, and replacing red meat with a combination of legumes, poultry, nuts and fish may reduce the risk of breast cancer." 

It seems like the more microbe exposure in the first year of life, the better for the immune system. From Science Daily:

Newborns exposed to dirt, dander, germs may have lower allergy, asthma risk

Infants exposed to rodent and pet dander, roach allergens and a wide variety of household bacteria in the first year of life appear less likely to suffer from allergies, wheezing and asthma, according to results of a study conducted by scientists at the Johns Hopkins Children's Center and other institutions.

Previous research has shown that children who grow up on farms have lower allergy and asthma rates, a phenomenon attributed to their regular exposure to microorganisms present in farm soil. Other studies, however, have found increased asthma risk among inner-city dwellers exposed to high levels of roach and mouse allergens and pollutants. The new study confirms that children who live in such homes do have higher overall allergy and asthma rates but adds a surprising twist: Those who encounter such substances before their first birthdays seem to benefit rather than suffer from them. Importantly, the protective effects of both allergen and bacterial exposure were not seen if a child's first encounter with these substances occurred after age 1, the research found.

"What this tells us is that not only are many of our immune responses shaped in the first year of life, but also that certain bacteria and allergens play an important role in stimulating and training the immune system to behave a certain way."

The study was conducted among 467 inner-city newborns from Baltimore, Boston, New York and St. Louis whose health was tracked over three years.

Infants who grew up in homes with mouse and cat dander and cockroach droppings in the first year of life had lower rates of wheezing at age 3, compared with children not exposed to these allergens soon after birth. The protective effect, moreover, was additive.  In addition, infants in homes with a greater variety of bacteria were less likely to develop environmental allergies and wheezing at age 3.

When researchers studied the effects of cumulative exposure to both bacteria and mouse, cockroach and cat allergens, they noticed another striking difference. Children free of wheezing and allergies at age 3 had grown up with the highest levels of household allergens and were the most likely to live in houses with the richest array of bacterial species. Some 41 percent of allergy-free and wheeze-free children had grown up in such allergen and bacteria-rich homes. By contrast, only 8 percent of children who suffered from both allergy and wheezing had been exposed to these substances in their first year of life.

Of course we should expect to find bacteria in a healthy placenta. It only makes sense. But this is interesting stuff - the possibility that the placental biome being out of whack playing a role in preterm birth. From Medical Xpress:

Bacteria live even in healthy placentas, study finds

Surprising new research shows a small but diverse community of bacteria lives in the placentas of healthy pregnant women, overturning the belief that fetuses grow in a pretty sterile environment. These are mostly varieties of "good germs" that live in everybody. But the study also hints that the make-up of this microbial colony plays a role in premature birth.

We share our bodies with trillions of microbes—on the skin, in the gut, in the mouth. These communities are called our microbiome, and many bacteria play critical roles in keeping us healthy, especially those in the intestinal tract. Healthy newborns pick up some from their mother during birth, different bugs depending on whether they were delivered vaginally or by C-section. What about before birth?

Aagard's team earlier had studied the microbiome of the vagina, and learned that its composition changes when a woman becomes pregnant. The puzzle: The most common vaginal microbes weren't the same as the earliest gut bacteria that scientists were finding in newborns. What else, Aagaard wondered, could be "seeding" the infants' intestinal tract?

With colleagues from Baylor and Texas Children's Hospital, Aagaard analyzed 320 donated placentas, using technology that teases out bacterial DNA to evaluate the type and abundance of different microbes. The placenta isn't teeming with microbes—it harbors a low level, Aagaard stressed. Among them are kinds of E. coli that live in the intestines of most healthy people. But to Aagaard's surprise, the placental microbiome most resembled bacteria frequently found in the mouth, she reported in the journal Science Translational Medicine. The theory: Oral microbes slip into the mother's bloodstream and make their way to the placenta.

Why does the body allow them to stay? Aagaard said there appears to be a role for different microbes. Some metabolize nutrients. Some are toxic to yeast and parasites. Some act a bit like natural versions of medications used to stop preterm contractions, she said. In fact, among the 89 placentas that were collected after preterm births, levels of some of the apparently helpful bacteria were markedly lower, she said.

There has been much discussion lately on declining male sperm counts and what it means. From Medical Xpress:

No link found between low sperm count, birth defects

Having a low sperm count doesn't seem to determine whether a man's children will be born with birth defects, a new study indicates.

With infertile couples, men are partially or fully responsible for the inability to conceive about 40 percent of the time. Assisted reproductive technologies such as in vitro fertilization can help couples have children, but research has suggested a possible link between these approaches—when used to treat infertility problems in the male partner—and a higher risk of birth defects.

In the new study, researchers examined a Baylor College of Medicine database in search of possible connections between birth defects and low sperm count. The researchers didn't find any links.

But the following finding is a cause for concern. From Science Daily:

Male infertility linked to mortality, study shows

Men who are infertile because of defects in their semen appear to be at increased risk of dying sooner than men with normal semen, according to a study. Men with two or more abnormalities in their semen were more than twice as likely to die over a roughly eight-year period as men who had normal semen, the study found.

Several interesting bacteria studies. Who knew that dental caries (tooth decay that causes cavities) is contagious? From Science Daily:

Bacteria can linger on airplane surfaces for days

Disease-causing bacteria can linger on surfaces commonly found in airplane cabins for days, even up to a week, according to research. In order for disease-causing bacteria to be transmitted from a cabin surface to a person, it must survive the environmental conditions in the airplane. In this study, MRSA lasted longest (168 hours) on material from the seat-back pocket while E. coli O157:H7 survived longest (96 hours) on the material from the armrest.

From Science Daily: Cavities are contagious, research shows

Dental caries, commonly known as tooth decay, is the single most common chronic childhood disease. In fact, it is an infectious disease, new research demonstrates. Mothers with cavities can transmit caries-producing oral bacteria to their babies when they clean pacifiers by sticking them in their own mouths or by sharing spoons. Parents should make their own oral health care a priority in order to help their children stay healthy.

From Science Daily: Physicians' stethoscopes more contaminated than palms of their hands

Although healthcare workers' hands are the main source of bacterial transmission in hospitals, physicians' stethoscopes appear to play a role. To explore this question, investigators assessed the level of bacterial contamination on physicians' hands and stethoscopes following a single physical examination. Two parts of the stethoscope (the tube and diaphragm) and four regions of the physician's hands (back, fingertips, and thenar and hypothenar eminences) were measured for the total number of bacteria present in a new study. The stethoscope's diaphragm was more contaminated than all regions of the physician's hand except the fingertips. Further, the tube of the stethoscope was more heavily contaminated than the back of the physician's hand.

Another reason to breastfeed infants. From Medical Xpress:

Breastfeeding promotes the growth of beneficial bacteria in the gut

A number of studies have shown that breastfed babies grow slightly slower and are slightly slimmer than children who are fed with infant formula. Children who are breastfed also have a slightly lower incidence of obesity, allergies, diabetes and inflammatory bowel disease later in life. According to a new study by the National Food Institute and the University of Copenhagen this may be due to the fact that breastfeeding promotes the development of beneficial bacteria in the baby's gut.

"We have become increasingly aware of how crucially important a healthy gut microbial population is for a well-functioning immune system. Babies are born without bacteria in the gut, and so it is interesting to identify the influence dietary factors have on gut microbiota development in children's first three years of life," research manager at the National Food Institute Tine Rask Licht says.

The study shows that there are significant changes in the intestinal bacterial composition from nine to 18 months following cessation of breastfeeding and other types of food being introduced. However, a child's gut microbiota continues to evolve right up to the age of three, as it becomes increasingly complex and also more stable.

"The results help to support the assumption that the gut microbiota is not - as previously thought - stable from the moment a child is a year old. According to our study important changes continue to occur right up to the age of three.

More information: The study has been described in a scientific article in Applied and Environmental Microbiology: Establishment of intestinal microbiota during early life: A longitudinal, explorative study of a large cohort of Danish infants:www.ncbi.nlm.nih.gov/pubmed/24584251