Skip to content

There are health benefits to babies from being breastfed, including that breast milk contains hundreds of microbial species which are transmitted to the baby. There are also health benefits to the mother, including a lower risk of breast cancer and ovarian cancer. In addition, a multicenter study in the United States found that breastfeeding lowers the mother's risk of type 2 diabetes over the next 30 years - by up to 47%.

In general: the study found that the longer a woman breastfeeds, the lower her risk of developing type 2 diabetes. Thus one can say that breastfeeding has a "protective" effect for type 2 diabetes. From Medical Xpress:

Thirty-year study shows women who breastfeed for six months or more reduce their diabetes risk

In a long-term national study, breastfeeding for six months or longer cuts the risk of developing type 2 diabetes nearly in half for women throughout their childbearing years, according to new Kaiser Permanente research published Jan. 16 in JAMA Internal Medicine. "We found a very strong association between breastfeeding duration and lower risk of developing diabetes, even after accounting for all possible confounding risk factors," said lead author Erica P. Gunderson, PhD, MS, MPH, senior research scientist with the Kaiser Permanente Division of Research.

Women who breastfed for six months or more across all births had a 47 percent reduction in their risk of developing type 2 diabetes compared to those who did not breastfeed at all. Women who breastfed for six months or less had a 25 percent reduction in diabetes risk.

Dr. Gunderson and colleagues analyzed data during the 30 years of follow up from the Coronary Artery Risk Development in Young Adults (CARDIA) study, a national, multi-center investigation of cardiovascular disease risk factors that originally enrolled about 5,000 adults aged 18 to 30 in 1985 to 1986, including more than 1,000 members of Kaiser Permanente Northern California.The new findings add to a growing body of evidence that breastfeeding has protective effects for both mothers and their offspring, including lowering a mother's risk of breast and ovarian cancer.

The long-term benefits of breastfeeding on lower diabetes risk were similar for black women and white women, and women with and without gestational diabetes. Black women were three times as likely as white women to develop diabetes within the 30-year study, which is consistent with higher risk found by others. Black women enrolled in CARDIA were also less likely to breastfeed than white women.

"The incidence of diabetes decreased in a graded manner as breastfeeding duration increased, regardless of race, gestational diabetes, lifestyle behaviors, body size, and other metabolic risk factors measured before pregnancy, implying the possibility that the underlying mechanism may be biological," Gunderson said. Several plausible biological mechanisms are possible for the protective effects of breastfeeding, including the influence of lactation-associated hormones on the pancreatic cells that control blood insulin levels and thereby impact blood sugar.

This study included 1,238 black and white women who did not have diabetes when they enrolled in CARDIA, or prior to their subsequent pregnancies. Over the next 30 years, each woman had at least one live birth and was routinely screened for diabetes under the CARDIA protocol, which included diagnostic screening criteria for diabetes. Participants also reported lifestyle behaviors (such as diet and physical activity) and the total amount of time they breastfed their children.

 Breastfeeding a baby. Credit: Wikipedia Commons, Anton Nossik.

There has been much discussion recently about breastfeeding - why is it so important? Is it really better than formula? The answer is: YES, breastfeeding is the BEST food for the baby, and for a number of reasons. Not only is it nature's perfect food for the baby, but it also helps the development of the baby's microbiome or microbiota (the community of microbes that live within and on humans). Specifically, breast milk transmits about 700 species of bacteria to the baby - bacteria that are important in developing the baby's microbiota, bacteria that are important for the baby's development and health in many ways (including the immune system). No formula does that. Not even close.

There is obviously much we don't know or understand yet, but finding 700 species in breast milk is a big deal. The most variety was in colostrum (the first milk), but even after 6 months (mature milk) they found hundreds of species of bacteria. What was also interesting was that the bacteria species in the breast milk varied whether the baby was born by vaginal birth, unplanned cesarean, or planned cesarean (this last had a somewhat different bacterial community which persisted through the 6 months of the study). By the way, in the original study, the authors made a point of saying that the 700 bacteria species are NOT bacterial contaminants, but meant to be there! (for those who want to sterilize and pasteurize everything because they think that all bacteria are bad).This study is from 2013, but well worth reading. Lactobacillus.(Credit:Janice Carr)      From Science Daily:

Breast milk contains more than 700 species of bacteria, Spanish researchers find

Researchers have traced the bacterial microbiota map in breast milk and identified the species of microbes taken from breast milk by infants. The study has revealed a larger microbial diversity than originally thought: more than 700 species. The breast milk received from the mother is one of the factors determining how the bacterial flora will develop in the newborn baby.

A group of Spanish scientists have now used a technique based on massive DNA sequencing to identify the set of bacteria contained within breast milk called microbiome.  Colostrum is the first secretion of the mammary glands after giving birth. In some of the samples taken of this liquid, more than 700 species of these microorganisms were found, which is more than originally expected by experts.

"This is one of the first studies to document such diversity using the pyrosequencing technique (a large scale DNA sequencing determination technique) on colostrum samples on the one hand, and breast milk on the other, the latter being collected after one and six months of breastfeeding," explain the coauthors, María Carmen Collado, researcher at the Institute of Agrochemistry and Food Technology (IATA-CSIC) and Alex Mira, researcher at the Higher Public Health Research Centre (CSISP-GVA).

The most common bacterial genera in the colostrum samples were Weissella, Leuconostoc, Staphylococcus, Streptococcus and Lactococcus. In the fluid developed between the first and sixth month of breastfeeding, bacteria typical of the oral cavity were observed, such as Veillonella, Leptotrichia and Prevotella....The study also reveals that the milk of overweight mothers or those who put on more weight than recommended during pregnancy contains a lesser diversity of species.

The type of labour also affects the microbiome within the breast milk: that of mothers who underwent a planned caesarean is different and not as rich in microorganisms as that of mothers who had a vaginal birth. However, when the caesarean is unplanned (intrapartum), milk composition is very similar to that of mothers who have a vaginal birth.

These results suggest that the hormonal state of the mother at the time of labour also plays a role: "The lack of signals of physiological stress, as well as hormonal signals specific to labour, could influence the microbial composition and diversity of breast milk," state the authors.

And yes, what you eat while breastfeeding has an effect on the breast milk. From Science Daily:  Carotenoid levels in breast milk vary by country, diet

A Purdue University-led analysis of breast milk concludes that levels of health-promoting compounds known as carotenoids differ by country, with the U.S. lagging behind China and Mexico, a reflection of regional dietary habitsCarotenoids are plant pigments that potentially play functional roles in human development and are key sources of vitamin A, an essential component of eye health and the immune system.The carotenoid content of a woman's breast milk is determined by her consumption of fruits and vegetables such as squash, citrus, sweet potatoes and dark, leafy greens.

All grown up: 'Why would anyone want to hide the beautiful, primal<br /><br /> smell of a baby?'<br /><br /> (Photo: Getty Images)     Another good reason to breastfeed. Exposure to pollutants like nitrogen dioxide and airborne particles can cause negative effects on motor and mental development in infants, but a new study says those effects are countered in babies who are breast-fed for at least 4 months by their mothers. Researchers in Spain began monitoring rural, pregnant women in 2006 and analyzed samples from 638 women and their infants at 15 months. They reported that babies who are breast-fed did not suffer from the potentially harmful developmental impact of PM2.5 (pollution particle matter) and NO2 (nitrogen dioxide). From Science Daily:

Breastfeeding protects against environmental pollution

Living in a city with a high level of vehicle traffic or close to a steel works means living with two intense sources of environmental pollution. However, a study conducted by the UPV/EHU researcher Aitana Lertxundi indicates that the harmful effect of PM2.5 pollution particle matter and nitrogen dioxide (NO2) disappears in breastfed babies during the first four months of life. According to the results of the research, breastfeeding plays a protective role in the presence of these two atmospheric pollutants.

Lertxundi's study focusses on the repercussions on motor and mental development during the first years of life caused by exposure to the PM2.5 and NO2 atmospheric pollutants .... "In the fetal phase the central nervous system is being formed and lacks sufficient detoxification mechanisms to eliminate the toxins that build up," pointed out Aitana Lertxundi.

The PM2.5 particles measure less than 2.5 micra, in other words, they are four times thinner that a single hair and are suspended in the air. As they are so small they can easily penetrate the body and as they weigh so little they can spread without any difficulty through the air and can move far away from the initial emission source. The composition of these neurotoxic particles depends on the emission sources in the area. The INMA Gipuzkoa area under study has a high presence of neurotoxic particle matter made up of lead, arsenic and manganese from industrial activity and traffic. In comparison with urban averages where the main source of pollution is traffic, the concentration is lower.

One result of the study is that the existence of an inverse relationship has been detected between exposure to pollution particle matter and the motor development of babies. In this respect, the researcher highlights the fact that "these indices display an alteration with respect to the average and, even if they are not worrying, they are significant in that they reveal the relationship existing between air quality and motor development." The analysis of the data also shows that neither the PM2.5 particle matter nor the NO2 exert a harmful effect on babies breastfed on mother's milk for at least four months.

In a newly published study looking at how infant gut microbes change over time, once again babies had differences in gut bacteria depending on whether they were delivered vaginally or by Cesarean section. But what's interesting is that stopping breastfeeding changed their gut bacteria  more (to more adult-like species) than just introducing solid foods. Certain types of bacteria thrive on the nutrients breast milk provides and once these nutrients are no longer available, then other bacteria emerge that are more commonly seen in adults.In other words, stopping breastfeeding seems to drive "maturation" of the gut bacteria. From The Scientist:

Maturation of the Infant Microbiome

Like babies themselves, the intestinal microbiomes of infants start out in an immature state and over time grow into communities similar to those of adults. In a new survey of 98 Swedish babies whose microbiota were sampled several times during their first year of life, researchers found that the microbiomes of breastfed infants persisted in a “younger” state longer than those of non-breastfed babies, even after the introduction of solid foods.

The conclusion that “stopping breastfeeding—rather than introducing solids—drives maturation is a new idea, because we all thought so far that solids introduction was a key factor in changing the microbiota,” said Maria Gloria Dominguez-Bello, a microbiologist at New York University School of Medicine who did not participate in the study.

Researchers from University of Gothenburg in Sweden and their colleagues found more adult-like taxa in the microbiomes of babies who stopped breastfeeding earlier, while the microbiota of babies breastfed for longer were dominated by bacteria present in breastmilk. The results, published today (May 13) in Cell Host & Microbe, are part of an effort to catalog the microbial changes that occur as children age and to note how those changes correlate with health and disease. Fredrik Bäckhed of Gothenburg and his colleagues collected stool samples from 98 moms and their newborns, and again sampled the babies’ stool at four and 12 months.

Confirming previous work, his team’s analysis found that the 15 babies born via cesarean section were colonized by different bacteria—many from oral and skin communities—than babies born vaginally, who shared numerous microbes with those present in their mothers’ stool.

For instance, in the vaginally delivered newborns’ microbiomes, genes that break down sugars in breastmilk were common. As these babies celebrated their first birthdays, the genes in their microbiomes favored the ability to breakdown starches, pectins, and more complex sugars.

“What’s nice about this paper is that they show this maturation [of the microbiome] in normal, healthy kids in a Western population follows this transition based on diet,” said Steven Frese, a postdoc at the University of California, Davis, who penned a commentary accompanying the study with his advisor, David Mills. “Being exposed to new foods promotes the growth of new bacteria that can consume them,” Frese told The Scientist.

Newborn infant. Photo:Wikipedia, Ernest F. 

Currently, during birth there are many potential disruptions to the healthy development of the infant's microbial ecosystem. Some practices to be concerned about: the use of antibiotics during pregnancy and during delivery, c-sections, newborns routinely given antibiotics, and then bottle feeding instead of breastfeeding. Sometimes one or more of these practices are medically necessary, but currently they are being done much too frequently and casually. In these ways we are conducting an experiment on every baby's microbial ecosystem with unknown long-term consequences. The following excerpts from Dr.Martin Blaser's popular 2014 book Missing Microbes: How the Overuse of Antibiotics Is Fueling Our Modern Plagues, even though written a year ago, are a nice summary of these issues. From Wired:

The Way You’re Born Can Mess With the Microbes You Need to Survive

THROUGHOUT THE ANIMAL kingdom, mothers transfer microbes to their young while giving birth....And for millennia, mammalian babies have acquired founding populations of microbes by passing through their mothers’ vagina. This microbial handoff is also a critical aspect of infant health in humans. Today it is in peril.

Microbes play a hidden role in the course of every pregnancy. During the first trimester, certain species of bacteria become overrepresented while others become less common. By the third trimester, just before the baby is born, even greater shifts occur. These changes, involving scores of species, are not random. The compositions change in the same direction across the dozens of women who have been studied.... Women of reproductive age carry bacteria, primarily lactobacilli, which make the vaginal canal more acidic. This environment provides a hardy defense against dangerous bacteria that are sensitive to acid. Lactobacilli also have evolved a potent arsenal of molecules that inhibit or kill other bacteria.

Whether the birth is fast or slow, the formerly germ-free baby soon comes into contact with the lactobacilli. The baby’s skin is a sponge, taking up the vaginal microbes rubbing against it. The first fluids the baby sucks in contain mom’s microbes, including some fecal matter.

Once born, the baby instinctively reaches his mouth, now full of lactobacilli, toward his mother’s nipple and begins to suck. The birth process introduces lactobacilli to the first milk that goes into the baby. This interaction could not be more perfect. Lactobacilli and other lactic acid–producing bacteria break down lactose, the major sugar in milk, to make energy. The baby’s first food is a form of milk called colostrum, which contains protective antibodies. The choreography of actions involving vagina, baby, mouth, nipple, and milk ensures that the founding bacteria in the baby’s intestinal tract include species that can digest milk for the baby.

Breast milk, when it comes in a few days later, contains carbohydrates, called oligosaccharides, that babies cannot digest. But specific bacteria such as Bifidobacterium infantis, another foundational species in healthy babies, can eat the oligosaccharides. The breast milk is constituted to give favored bacteria a head start against competing bacteria.

Cesarian delivery is a largely unrecognized threat to the microbial handoff from mother to child. Instead of traveling down the birth canal picking up lactobacilli, the baby is surgically extracted from the womb through an incision in the abdominal wall....For all of these reasons, U.S. C-section rates increased from fewer than one in five births in 1996 to one in three births in 2011—a 50 percent increase.

The founding populations of microbes found on C-section infants are not those selected by hundreds of thousands of years of human evolution. A few years ago in Puerto Ayacucho, Venezuela, my wife, Gloria, conducted the first study of its kind to test whether the microbes found on newborn babies delivered vaginally or by C-section varied in any way....The mouths, skin, and first bowel movements of babies born vaginally were populated by their mother’s vaginal microbes: Lactobacillus, Prevotella, or Sneathia species. Those born by C-section harbored bacterial communities found on skin, dominated by Staphylococcus, Corynebacterium, and Propionibacterium.

In other words, their founding microbes bore no relationship to their mother’s vagina or any vagina. At all the sites—mouth, skin, gut—their microbes resembled the pattern on human skin and organisms floating in the air in the surgery room. They were not colonized by their mother’s lactobacilli. The fancy names of these bacteria don’t matter as much as the notion that the founding populations of microbes found on C-section infants are not those selected by hundreds of thousands of years of human evolution or even longer.

Another threat to a baby’s newly acquired resident microbes involves antibiotics given to the mother. Most doctors consider it safe to prescribe penicillins for all sorts of mild infections in pregnancy—coughs, sore throats, urinary tract infections. Sometimes when doctors think that the mother has a viral infection they also give antibiotics just in case it is actually a bacterial infection.

Then comes the birth itself. Women in labor routinely get antibiotics to ward off infection after a C-section....Antibiotics are broad in their effects, not targeted....The problem, of course, is that we know antibiotics are broad in their effects, not targeted. While the antibiotic kills Group B strep, it also kills other often-friendly bacteria, thus selecting for resistant ones. This practice is altering the composition of the mother’s microbes in all compartments of her body just before the intergenerational transfer is slated to begin.

The baby also is affected in similar unintended ways. Any antibiotic that gets into the bloodstream of the fetus or into the mother’s milk will inevitably influence the composition of the baby’s resident microbes, but we are only beginning to understand what this means.

Finally, the babies are directly exposed. Most parents are not aware that all American-born babies today are given an antibiotic immediately after birth. The reason is that many years ago, before antibiotics, women who unknowingly had gonorrhea would pass the infection to their babies, giving the newborns terrible eye infections that could cause blindness...The dose is low but is likely affecting the composition of the infant’s resident microbes just when the founding populations are developing. We should be able to develop a better way to screen, so we can target those babies at the highest risk, perhaps a few hundred among the millions of births a year.

Although babies are born into a world replete with diverse bacteria, the ones that colonize them are not accidental. These first microbes colonizing the newborn begin a dynamic process. We are born with innate immunity, a collection of proteins, cells, detergents, and junctions that guard our surfaces based on recognition of structures that are widely shared among classes of microbes. In contrast, we must develop adaptive immunity that will clearly distinguish self from non-self. Our early-life microbes are the first teachers in this process, instructing the developing immune system about what is dangerous and what is not.

A newborn infant, seconds after delivery. Amniotic fluid glistens on the child's skin.  Credit: Wikipedia, Ernest F

Labrador Retriever image Research is accumulating that the microbial exposure from a vaginal birth, breastfeeding, and pets in the first year of life are all good for a baby's developing immune system. From Science Daily:

Breastfeeding, other factors help shape immune system early in life

Researchers say that breastfeeding and other factors influence a baby's immune system development and susceptibility to allergies and asthma by what's in their gut. The striking findings from a series of studies further advance the so-called hygiene hypothesis theory that early childhood exposure to microorganisms affects the immune system's development and onset of allergies, says Christine Cole Johnson, Ph.D., MPH, chair of Henry Ford's Department of Public Health Sciences and principal research investigator.

The gut microbiome is the collection of microorganisms in the gastrointestional, or GI, tract, and the human body has billions of these microbes... The gut microbiome is known to play an important role in immune system development, and is thought to contribute to a host of diseases like obesity, autoimmune diseases, circulating disorders and pediatric allergies and infection.

"For years now, we've always thought that a sterile environment was not good for babies. Our research shows why. Exposure to these microorganisms, or bacteria, in the first few months after birth actually help stimulate the immune system," Dr. Johnson says."The immune system is designed to be exposed to bacteria on a grand scale. If you minimize those exposures, the immune system won't develop optimally."

In six separate studies, researchers sought to evaluate whether breastfeeding and maternal and birth factors had any effect on a baby's gut microbiome and allergic and asthma outcomes. Using data collected from the WHEALS birth cohort, researchers analyzed stool samples from infants taken at one month and six months after birth. They also looked at whether the gut microbiome impacted the development of regulatory T-cells, or Treg, which are known to regulate the immune system. Highlights:

Breastfed babies at one month and six months had distinct microbiome compositions compared to non-breastfed babies. These distinct compositions may influence immune system development.Breastfed babies at one month were at decreased risk of developing allergies to pets. • Asthmatic children who had nighttime coughing or flare-ups had a distinct microbiome composition during the first year of life. • For the first time, gut microbiome composition was shown to be associated with increasing Treg cells.

Researchers found that a baby's gut microbiome patterns vary by: • A mother's race/ethnicity. • A baby's gestational age at birth. • Prenatal and postnatal exposure to tobacco smoke. • Caesarean section versus vaginal delivery.• Presence of pets in the home.

Henry Ford's landmark 2002 study found exposure to dogs or cats in the first year of a baby's life reduced their risk for allergies.

More long-term benefits from breastfeeding. This study finds that long-term it's as good or better than statins! From Science Daily:

Birthweight and breastfeeding have implications for children's health decades later

Young adults who were breastfed for three months or more as babies have a significantly lower risk of chronic inflammation associated with cardiovascular and metabolic diseases, according to research from the Brown School at Washington University in St. Louis.

"This study shows that birthweight and breastfeeding both have implications for children's health decades later," said Molly W. Metzger, PhD, assistant professor at the Brown School and a co-author of the study with Thomas W. McDade, PhD, of Northwestern University.

"Specifically, we are looking at the effects of these early factors on later levels of C-reactive protein (CRP), a biomarker associated with risk for cardiovascular and metabolic disease," Metzger said. "Comparing the long-term effects of breastfeeding to the effects of clinical trials of statin therapy, we find breastfeeding to exert effects that are as large or larger."

The researchers used data from the U.S. National Longitudinal Study of Adolescent Health, including parent surveys, and blood samples providing measurements of CRP. These findings held up in a series of sibling models, in which one sibling was breastfed and the other was not. Such models provide improved confidence in the results by implicitly controlling for genetic factors for elevated CRP.

This study was published a year ago (Aug. 2013) and shows a long-term benefit to the mother (reduced Alzheimer's risk) of breastfeeding. From Science Daily:

Breastfeeding may reduce Alzheimer's risk

Mothers who breastfeed their children may have a lower risk of developing Alzheimer's Disease, with longer periods of breastfeeding also lowering the overall risk, a new study suggests.

The report, newly published in the Journal of Alzheimer's Disease, suggests that the link may be to do with certain biological effects of breastfeeding. For example, breastfeeding restores insulin tolerance which is significantly reduced during pregnancy, and Alzheimer's is characterised by insulin resistance in the brain.

Another reason to breastfeed infants. From Medical Xpress:

Breastfeeding promotes the growth of beneficial bacteria in the gut

A number of studies have shown that breastfed babies grow slightly slower and are slightly slimmer than children who are fed with infant formula. Children who are breastfed also have a slightly lower incidence of obesity, allergies, diabetes and inflammatory bowel disease later in life. According to a new study by the National Food Institute and the University of Copenhagen this may be due to the fact that breastfeeding promotes the development of beneficial bacteria in the baby's gut.

"We have become increasingly aware of how crucially important a healthy gut microbial population is for a well-functioning immune system. Babies are born without bacteria in the gut, and so it is interesting to identify the influence dietary factors have on gut microbiota development in children's first three years of life," research manager at the National Food Institute Tine Rask Licht says.

The study shows that there are significant changes in the intestinal bacterial composition from nine to 18 months following cessation of breastfeeding and other types of food being introduced. However, a child's gut microbiota continues to evolve right up to the age of three, as it becomes increasingly complex and also more stable.

"The results help to support the assumption that the gut microbiota is not - as previously thought - stable from the moment a child is a year old. According to our study important changes continue to occur right up to the age of three.

More information: The study has been described in a scientific article in Applied and Environmental Microbiology: Establishment of intestinal microbiota during early life: A longitudinal, explorative study of a large cohort of Danish infants:www.ncbi.nlm.nih.gov/pubmed/24584251

Breast milk contains hundreds of species of bacteria.From the December 8, 2013 Scientific American:

The bacteria in breast milk

Several recent studies have found that breast milk contains a healthy dose of commensal bacteria; all the staphylococci, streptococci, and lactic acid bacteria that are found in the infant gut. This isn’t just bacteria from the skin which have contaminated the samples, but bacteria that have come from inside the breast as an integral component of the milk.

In a study of 16 women it was found that while each milk sample contained hundreds of different bacterial species, around half of the microbiotic community was made up of nine species present in all samples. The other half varied from person to person. This pattern is also found in human gut microbes; a core set present in all individuals along with a large diversity of separate species to make up a unique individual microbiome.

So how do bacteria get into breast milk? Some of them may come from the mouth of the baby. During feeding the skin of both the mother and baby will be in contact with the baby’s open mouth and a certain amount of flow-back can occur between the mouth and nipple. More excitingly it’s been suggested that immune cells in the mothers gut may be able to pick up bacteria and carry them around the body using the lymphatic system. The lymphatic system is a network of vessels used to transport blood plasma. It’s a main highway for immune cells inside the body and is also involved in the absorption and transports of fats.

Like all humans, infants have a range of bacteria within their gut. It looks like these bacteria are initially supplied from the mother’vaginal and skin bacteria, before being replaced by bacteria from the breast milk. Researchers also found that when babies started eating solid food a whole new range of bacteria was introduced, forming the gut microbiome that persisted into adulthood.