Skip to content

2

The following article in a popular magazine follows up on research that came out last year about the alarming steep decline in male sperm counts and sperm concentration over the past few decades. This is true for the U.S., Europe, Australia, New Zealand, and it is thought world wide. The article discusses the causes: environmental chemicals and plastics, especially those that are endocrine disruptors (they disrupt a person's hormones!). These chemicals are all around us, and we all have some in our bodies (but the amounts and types vary from person to person). Some examples of such chemicals are parabens, phthalates, BPA and BPA substitutes.

Even though there are effects from these chemicals throughout life, some of the worst effects from these chemicals seem to be during pregnancy - with a big effect on the developing male fetus. Testosterone levels in men are also droppingBottom line: males are becoming "less male", especially due to their exposure to all these chemicals when they are developing before birth (fetal exposure). Since it is getting worse with every generation of males, the concern is that soon males may be unable to father children because their sperm count will be too low - infertility. Dogs are experiencing the same decline in fertility!

Why isn't there more concern over this? What can we do? We all use and need plastic products, but we need to use safer chemicals in products, ones that won't mimic hormones and have endocrine disrupting effects. Remember, these chemicals have more effects on humans than just sperm quality (here and here). While you can't totally avoid plastics and endocrine disrupting chemicals, you can definitely lower your exposure. And it's most important before conception (levels of these chemicals in both parents), during pregnancy, and during childhood.

Do go read the whole article. Excerpts from Daniel Noah Halpern's article in GQ: Sperm Count Zero

A strange thing has happened to men over the past few decades: We’ve become increasingly infertile, so much so that within a generation we may lose the ability to reproduce entirely. What’s causing this mysterious drop in sperm counts—and is there any way to reverse it before it’s too late? 

Last summer a group of researchers from Hebrew University and Mount Sinai medical school published a study showing that sperm counts in the U.S., Europe, Australia, and New Zealand have fallen by more than 50 percent over the past four decades. (They judged data from the rest of the world to be insufficient to draw conclusions from, but there are studies suggesting that the trend could be worldwide.) That is to say: We are producing half the sperm our grandfathers did. We are half as fertile.

The Hebrew University/Mount Sinai paper was a meta-analysis by a team of epidemiologists, clinicians, and researchers that culled data from 185 studies, which examined semen from almost 43,000 men. It showed that the human race is apparently on a trend line toward becoming unable to reproduce itself. Sperm counts went from 99 million sperm per milliliter of semen in 1973 to 47 million per milliliter in 2011, and the decline has been accelerating. Would 40 more years—or fewer—bring us all the way to zero? 

I called Shanna H. Swan, a reproductive epidemiologist at Mount Sinai and one of the lead authors of the study, to ask if there was any good news hiding behind those brutal numbers. Were we really at risk of extinction? She failed to comfort me. “The What Does It Mean question means extrapolating beyond your data,” Swan said, “which is always a tricky thing. But you can ask, ‘What does it take? When is a species in danger? When is a species threatened?’ And we are definitely on that path.” That path, in its darkest reaches, leads to no more naturally conceived babies and potentially to no babies at all—and the final generation of Homo sapiens will roam the earth knowing they will be the last of their kind.

...continue reading "Will All Men Eventually Be Infertile?"

...continue reading "Can We Avoid the Endocrine Disruptors Around Us?"

Once again a study (this time a review and meta-analysis of other studies) found an alarming and steep decline in sperm counts in men from Western countries over a 40 year period. This steep decline for both sperm concentration (SC) and total sperm count (TSC) is for men in North America, Europe, Australia, and New Zealand. The sperm count and sperm concentration declined 50 to 60% in the period between 1973 to 2011 - with a downward slope showing a decline of -1.4% to -1.6% per year. On the other hand, men from South America, Asia and Africa did not show a decline.

The authors of the study were very concerned over the results showing this decline in Western countries, with no evidence of the decline leveling off. As these declines continue, more and more men will have sperm counts below the point at which they can reproduce. Instead they will be infertile or "sub-fertile" (with a decreased probability of conceiving a child). The threshold level associated with a "decreased monthly probability of conception" is considered to be 40 million/ml.

Shockingly - this study found that in 1973 when Western men who were not selected for fertility, and didn't know their fertility status (e.g., college students, men screened for the military) - the average sperm concentration was 99 million/ml, but by 2011 it was 47.1 million/ml. These men were called "unselected" and are likely to be representative of men in the general population. Men known to be fertile (e.g., had fathered a child) were at 83.8 million/ml in 1976, but were down to 62.0 million/ml in 2011. Both groups had consistent declines year after year.

What about the men from South America, Asia, and Africa? There, studies showed that the "unselected" men (not selected for fertility and who didn't know their fertility status) started out at 72.7 million/ml in 1983, and were at 62.6 million/ml in 2011, while men known to be fertile started out on average at 66.4 million/ml in 1978 and were at 75.7 million/ml in 2011. They did not show the decline of the North American, European, Australian, and New Zealand group of men.

What does this mean? And what is going on? These results go beyond fertility and reproduction. The decline is consistent with other male reproductive health indicators over the last few decades: higher incidence of testicular cancer, higher rates of cryptorchidism, earlier onset of male puberty, and decline in average testosterone levels. Instead, it appears that sperm counts of men are "the canary in the mine" for male health - evidence of harm to men from environmental and lifestyle influences.

These Western developed countries are awash in chemicals and plastics, also with endocrine disruptors (hormone disruptors) in our foods, our personal care products, etc - and so studies find these chemicals in all of us (in varying degrees). Same with flame retardants, pesticides, "scented" products. Exposure to all sorts of environmental pollutants - whether in air, water, soil, our food - such as high levels of aluminum. All of these can have an effect on sperm counts and reproductive health.

And note that chemicals that can depress sperm counts  are also linked to many health problems, including chronic diseases.

What can you do?  You can lower your exposure to many chemicals (e.g., pesticides), plastics, and endocrine disruptors, but you can't avoid them totally. Yes, it'll mean reading labels and ingredient lists on foods, personal care products (such as soaps, shampoo, lotion), and products used in the home. [LIST OF THINGS YOU CAN EASILY DO]

TRY TO AVOID OR LOWER EXPOSURE TO: phthalates, parabens, BPA, BPS, and even BPA-free labeled products (all use similar chemicals), flame-retardants (e.g., in upholstered furniture and rugs), stain-resistant, dirt-resistant, waterproof coatings, Scotchgard, non-stick cookware coatings, dryer sheets, scented products (including scented candles and air fresheners), fragrances, pesticides in the yard and home, and "odor-free", antibacterial, antimicrobial, anti-mildew products. Don't microwave foods in plastic containers (including microwave popcorn bags). 

INSTEAD: Try to eat more organic foods, look for organic or least-toxic Integrated Pest Management (IPM) alternatives for the home and garden. Store foods as much as possible in glass, ceramic, or stainless steel containers. Buy foods, if possible, that are in glass bottles - not cans (all lined with endocrine disrupting chemicals) and not plastic bottles or containers (plastics leach). Some people use water filters because there are so many contaminants in our water, even if they meet federal guidelines on "allowable levels" in the water.

Avoid cigarette smoke or smoking. Try to lose weight if overweight. Open windows now and then in your residence to lower indoor air pollution. The list is long - yes, a lifestyle change! (see posts on ENDOCRINE DISRUPTORS, FLAME RETARDANTS, and PESTICIDES)

From Medical Xpress: Study shows a significant ongoing decline in sperm counts of Western men

In the first systematic review and meta-analysis of trends in sperm count, researchers from the Hebrew University-Hadassah Braun School of Public Health and Community Medicine and the Icahn School of Medicine at Mount Sinai report a significant decline in sperm concentration and total sperm count among men from Western countries.

By screening 7,500 studies and conducting a meta-regression analysis on 185 studies between 1973 and 2011, the researchers found a 52.4 percent decline in sperm concentration, and a 59.3 percent decline in total sperm count, among men from North America, Europe, Australia and New Zealand who were not selected based on their fertility status. In contrast, no significant decline was seen in South America, Asia and Africa, where far fewer studies have been conducted. The study also indicates the rate of decline among Western men is not decreasing: the slope was steep and significant even when analysis was restricted to studies with sample collection between 1996 and 2011.

The findings have important public health implications. First, these data demonstrate that the proportion of men with sperm counts below the threshold for subfertility or infertility is increasing. Moreover, given the findings from recent studies that reduced sperm count is related to increased morbidity and mortality, the ongoing decline points to serious risks to male fertility and health.

"Decreasing sperm count has been of great concern since it was first reported twenty-five years ago. This definitive study shows, for the first time, that this decline is strong and continuing. The fact that the decline is seen in Western countries strongly suggests that chemicals in commerce are playing a causal role in this trend," Dr. Shanna H Swan, a professor in the Department of Environmental Medicine and Public Health at the Icahn School of Medicine at Mount Sinai, New York.

While the current study did not examine causes of the observed declines, sperm count has previously been plausibly associated with environmental and lifestyle influences, including prenatal chemical exposure, adult pesticide exposure, smoking, stress and obesity. Therefore, sperm count may sensitively reflect the impact of the modern environment on male health across the lifespan and serve as a "canary in the coal mine" signaling broader risks to male health. [Original study.]

  Human sperm. Credit: Wikipedia

Another study was just published with worrisome findings about phthalates. Phthalates are a group of chemicals used widely in common consumer products such as food packaging, toys, medical devices, medications, and personal care products. They are endocrine disruptors (can interfere with normal hormonal function) and are linked to a number of health problems (here, here, and here).

The study looked at urban Australian men and found that the higher the level of phthalates, the higher the rate of cardiovascular disease, type-2 diabetes, and hypertension. The researchers also found that higher levels of chronic low-grade inflammatory biomarkers (meaning higher levels of low-grade inflammation) was associated with higher levels of phthalates. All these findings confirm what other studies, done in other countries, have found.

Phthalates, which are measured in the urine,  were detected in 99.96% of the 1504 men. Eating a western dietary pattern (fast food, highly processed, low fiber) was also associated with higher phthalate levels.  However, they did not find an association of phthalate levels with asthma and depression. From Science Daily:

Everyday chemicals linked to chronic disease in men

Chemicals found in everyday plastics materials are linked to cardiovascular disease, type-2 diabetes and high blood pressure in men, according to Australian researchers. Researchers from the University of Adelaide and the South Australian Health and Medical Research Institute (SAHMRI) investigated the independent association between chronic diseases among men and concentrations of potentially harmful chemicals known as phthalates.

Phthalates are a group of chemicals widely used in common consumer products, such as food packaging and wrappings, toys, medications, and even medical devices. Researchers found that of the 1500 Australian men tested, phthalates were detected in urine samples of 99.6% of those aged 35 and over. "We found that the prevalence of cardiovascular disease, type-2 diabetes and high blood pressure increased among those men with higher total phthalate levels," says senior author Associate Professor Zumin Shi, from the University of Adelaide's Adelaide Medical School and the Freemasons Foundation Centre for Men's Health, and a member of SAHMRI's Nutrition & Metabolism theme.

"While we still don't understand the exact reasons why phthalates are independently linked to disease, we do know the chemicals impact on the human endocrine system, which controls hormone release that regulate the body's growth, metabolism, and sexual development and function. "In addition to chronic diseases, higher phthalate levels were associated with increased levels of a range of inflammatory biomarkers in the body," he says.

Age and western diets are directly associated with higher concentrations of phthalates. Previous studies have shown that men who ate less fresh fruit and vegetables and more processed and packaged foods, and drank carbonated soft drinks, have higher levels of phthalates in their urine.... Associate Professor Shi says that although the studies were conducted in men, the findings are also likely to be relevant to women. "While further research is required, reducing environmental phthalates exposure where possible, along with the adoption of healthier lifestyles, may help to reduce the risk of chronic disease," he says. [Original study.]

Both males and females should consider trying to lower their exposure to endocrine disrupting chemicals (hormone disrupting chemicals) when contemplating pregnancy. These chemicals are found in many personal care, food packaging, and plastic products. They can interfere with natural hormone function and are linked to a wide assortment of health problems. Evidence (like this study) is mounting that higher levels of endocrine disruptors in the body have a negative effect on the developing embryo. So men - an important time to try to lower your exposure to endocrine disruptors is the 3 months preconception (it takes about 3 months for sperm to mature), and for women it's the entire pregnancy period (from conception to birth). You can't totally avoid endocrine disrupting chemicals (they're detected in almost all of us), but you can lower your exposure.

What to avoid and what to do? Read the ingredient lists of all personal care products and try to avoid those with phthalates, parabens, triclosan, bisphenol-A (BPA), BPS, triclocarbon, and oxybenzone (BP-3). Try to buy "unscented" or "fragrance-free" products. Canned foods are considered one of the most significant routes of human exposure to bisphenol A (BPA), so limit canned foods. Note that "BPA-free" cans and plastic containers also contain endocrine disruptors. Another way to lower exposure to endocrine disruptors is to buy and store food not in plastic containers, but in glass containers or stainless steel. Don't microwave food in any sort of plastic containers. Avoid products with fragrances in them, including air fresheners and dryer sheets. Avoid flexible vinyl (e.g. shower curtains). [For all posts on endocrine disruptors, and an article from National Institutes of Health. Also check ewg.org for lists of products]. From Environmental Health News:

Are plastic chemicals in dads hurting embryos?

Turns out, moms, it's not just about you staying off alcohol and avoiding potentially harmful chemicals while pregnant or trying to become so. Your partners' exposure to plastics and packaging could play an important role in your ability to conceive a child. A father’s exposure to chemicals commonly found in plastics, personal care products and food packaging might decrease the quality of embryos produced by their sperm, according to a new study out of Massachusetts.

The study, published today in the journal Human Reproduction, is the first to examine dads’ exposure to phthalates and embryo quality through five days of in vitro fertilization (IVF). The lower quality embryos had fewer signs of the type of progress that leads to a fetus. The findings suggest men’s exposure to the chemicals—used in vinyl products, food packaging, fragrances and in other plastics to make them pliable—might hamper the development of their unbornEmbryos are the result of a fertilized egg in a woman and are the precursor to the fetus. About 12 weeks into pregnancies, the unborn is considered a fetus.

Most people have phthalates in their bodies and the compounds disrupt the endocrine system—interfering with hormones that are crucial for reproduction.While the study doesn’t prove phthalates in men lead to poor quality embryos, it adds to mounting evidence that the ubiquitous chemicals may impact pregnanciesSperm mature over 72 days on average, almost three months,” said senior author of the study, Richard Pilsner, an epidemiologist and assistant professor at the University of Massachusetts Amherst. “During that time, we may tell men to maybe try to avoid phthalates. There’s no way to totally escape exposure but you could minimize it.

Led by Pilsner, researchers collected 761 immature eggs from 50 couples undergoing IVF at the Baystate Medical Center in Springfield, Mass., and checked their progression to embryos. They tested embryos at three days and five days after the eggs were fertilized, and collected urine samples from the couples on the same day as the semen sample and egg retrieval to test for phthalate metabolites, substances formed after the body processes phthalates. At day five, high exposure to phthalates in men was linked to fewer—or no—signs of the type of development that eventually leads to a fetus and placenta compared to men with lower exposure.

Phthalate exposure for fetuses has been linked to genital defects, lower IQs and miscarriages but it’s not clear what impacts this poor embryo quality could mean for the unborn. Russ Hauser, a professor of reproductive physiology at Harvard University, said in an email that the impacts might range from pregnancy loss to effects on children's health later in their life.

Shanna Swan, a professor of reproductive science at Mount Sinai Hospital in New York who was not involved in the study, said the study is limited in that it is small, and not representative of the general population because it only included couples undergoing IVF. They also didn’t see any association with the women’s exposure and decreased embryo quality. But this isn’t the first study to report a male-only effect. Higher phthalates in father’s urine was associated with an increased time for couples to conceive, according to a 2014 study. Swan said the current study was strengthened in that it is “remarkably consistent” with the 2014 study. Some phthalate metabolites linked to impacts in both studies are known to target male reproductive hormones, she said.

Many articles have been written about endocrine disrupting chemicals and the numerous health problems they're linked to (see posts on them). It's been known for decades that endocrine-disrupting chemicals pose a danger to human health because the compounds can interfere with natural hormone function. Chemical exposure occurs through routine contact with plastic bottles, vinyl items, toys, food cans, cosmetics, flame retardants, and other consumer products containing "endocrine-disrupting chemicals". We ingest, breathe them in (inhalation), or absorb them through the skin as consumer products are used and also as consumer products break down (the dust).

Finally a study examines the financial cost of these chemicals - an estimate of more than $340 billion annually due to health care costs and lost wages (the authors say this is a conservative estimate). What can ordinary people do to lower their exposure to these chemicals? Avoid the use of pesticides in the home, lawns, and gardens. Eat as much organic foods as possible. Avoid buying food in cans, including soda. Store food in glass and stainless steel containers. Avoid microwaving in plastic containers (use glass instead). Avoid plastic bottles with the numbers 3, 6, and 7 on the bottom. Avoid vinyl items such as vinyl shower curtains and vinyl toys. Avoid fragrances (get unscented products). Read labels on lotions, shampoos, soaps, make-up - avoid phthalates and parabens. Avoid flame retardants (check the labels on new upholstered furniture). Avoid non-stick pots, avoid stain-repellant items, avoid air fresheners and dryer sheets. And that's just a partial list....From Environmental Health News:

Toxic economy: Common chemicals cost US billions every year

Exposure to chemicals in pesticides, toys, makeup, food packaging and detergents costs the U.S. more than $340 billion annually due to health care costs and lost wages, according to a new analysis. The chemicals, known as endocrine disruptors, impact how human hormones function and have been linked to a variety of health problems such as impaired brain development, lower IQs, behavior problems, infertility, birth defects, obesity and diabetes. The findings, researchers say, "document the urgent public threat posed by endocrine disrupting chemicals.”   ...continue reading "Exposure to Common Chemicals Costs the US $340 Billion Each Year"

Recent research examined levels of endocrine disruptors called phthalates in people eating fast food. Researchers found evidence of a dose–response relationship between fast food intake and exposure to phthalates - the more one eats fast food, the more phthalates (actually metabolites of the phthalates) can be measured in the person's urine. Fast food consumers had higher urinary levels of the phthalates DEHP, DiNP, and BPA than those not consuming fast food (even though the differences in levels of BPA among groups were "non-significant"). This is of concern because these endocrine disruptors are linked to a number of health problems. (Earlier discussion of this research.)

DEHP, DiNP, and BPA are detected in over 90% of the population in the US, but since there are many health concerns - it is better to have lower levels than higher levels. (Zero levels would be best). Note that phthalates and BPA are quickly metabolized and excreted in urine, with elimination half-lives of less than 24 hr - which is why the study looked at what had been eaten in the last 24 hours. But this also shows that one can quickly reduce their levels in the body.

Some possible sources of phthalate contamination in fast food are: PVC tubing, vinyl gloves used for food handling, and food packaging, including beverage cans - the chemicals leach or migrate out into the food and then are ingested. (More on chemicals migrating from containers to food), Fast food was defined as food obtained from restaurants without waiter service and from pizza restaurants, as well as all carry-out and delivery food. Another excellent reason to cut back on fast food (like we don't have enough reasons already!). The following news report discusses the research. From Environmental Health Perspectives:

Phthalates in Fast Food: A Potential Dietary Source of Exposure

Many research studies have surveyed nutritional habits, but fewer have studied how food processing and packaging might introduce unwanted chemicals into foods. In this issue of EHP, researchers report that fast food consumption appears to be one source of exposure to the chemicals di(2-ethylhexyl) phthalate (DEHP) and diisononyl phthalate (DiNP).1

The authors used data from the National Health and Nutrition Examination Survey (NHANES) to estimate the percentage of individuals’ calories that came from fast food, fat intake attributable to fast food consumption, and fast food intake by food group. During NHANES interviews, respondents had reported their diet from the preceding 24 hours. Fast food was defined as food obtained from restaurants without waiter service and from pizza restaurants, as well as all carryout and delivery food.2 ....The final study population included nearly 9,000 people aged 6 years or older. Approximately one-third of people surveyed had eaten fast food in the preceding 24 hours. Study participants who ate fast food were more likely to be male, under age 40, and non-Hispanic black, and to have higher total calorie and total fat intake from fast food, compared with the general population.1

Fast food consumers had higher urinary levels of DEHP, DiNP, and BPA than non-consumers, although the differences in average urinary levels were small and for BPA were non-significant. When fast food intake was categorized by food group, DEHP metabolites were associated with intake of grains and “other” (a category that included vegetables, condiments, potato items, beverages, and more). DiNP metabolites were associated with intake of meat and grains.1

The authors also found that the associations between phthalates and fast food were not uniform across the population.1They speculate that the pronounced association they saw between fast food consumption and DEHP in black consumers could reflect higher overall consumption of fast food and/or different food choices among this population. Prior research suggests that predominately black neighborhoods in urban areas have a greater density of fast food restaurants than white neighborhoods.3

The authors point to PVC tubing, vinyl gloves used for food handling, and food packaging as possible sources of phthalate contamination in fast food. DEHP is a ubiquitous high-molecular-weight phthalate that has been removed from some products due to concerns about potential adverse health effects.5 In some cases it is being replaced with DiNP.2

The related Environmental Health Perspectives research article:  Recent Fast Food Consumption and Bisphenol A and Phthalates Exposures among the U.S. Population in NHANES, 2003–2010

Experimental animal studies demonstrate that DEHP and DiNP have endocrine-disrupting properties because of their anti-androgenic effects on the male reproductive system (National Research Council 2008). Human exposure to DEHP has been associated with adverse reproductive, neurobehavioral, and respiratory outcomes in children (Braun et al. 2013; Ejaredar et al. 2015) and metabolic disease risk factors such as insulin resistance in adolescents and adults (James-Todd et al. 2012; Attina and Trasande 2015). Though epidemiologic evidence of DiNP is less complete, recent studies report associations between exposure and similar health outcomes including adverse respiratory and metabolic outcomes in children (Bertelsen et al. 2013; Attina and Trasande 2015). BPA is also a suspected endocrine disrupter, and experimental and human evidence suggest that BPA is a reproductive toxicant (Peretz et al. 2014). In addition, prenatal BPA exposure has also been associated with adverse neurobehavioral outcomes in children (Mustieles et al. 2015).

Given the concern over chemical toxicity, it is important to identify modifiable sources of exposure that may be targeted for exposure reduction strategies. Simulated exposure modeling, observational epidemiologic studies, and intervention studies all suggest that diet is an important exposure pathway for both high-molecular-weight phthalates and BPA.....Phthalates have been shown to leach into food from PVC in materials like tubing used in the milking process, lid gaskets, food preparation gloves, conveyor belts and food packaging materials (Cao 2010;Serrano et al. 2014). In fact, an intervention study reported that urinary BPA and DEHP were reduced by 66% and 53–56%, respectively, when participants’ diets were restricted to food with limited packaging (Rudel et al. 2011). Foods high in fat, such as dairy and meat, may be more contaminated by high-molecular-weight phthalates that are more lipophilic such as DEHP (Serrano et al. 2014). Fast food may be an important source of exposure to phthalates and BPA because it is highly processed, packaged, and handled.

Ten chemicals suspected or known to harm human health are present in more than 90% of U.S. household dust samples, according to a new study. The research adds to a growing body of evidence showing the dangers posed by exposure to chemicals we are exposed to on a daily basis. The chemicals come from a variety of household goods, including toys, cosmetics, personal care products, furniture, electronics, nonstick cookware, food packaging, floor coverings, some clothing (e.g., stain resistant), building materials, and cleaning products. How do the chemicals get into the dust? The chemicals can leach, migrate, abrade, or off-gas from the products, which winds up in the dust and  results in human exposure. (That's right:  vacuum a lot and wash your hands a lot, and try to avoid or cut  back use of products with these chemicals,)

What was found in the dust? The main chemicals were: phthalates — a group of chemicals that includes DEP, DEHP, DNBP and DIBP (these were present in the highest concentrations),  highly fluorinated chemicals (HFCs), flame retardants (both old and newer replacement ones), synthetic fragrances, and phenols. These chemicals are known to have various adverse health effects, including endocrine disruption, cancer, neurological, immune, and developmental effects. (See posts on endocrine disruptors and flame retardants) Studies typically study one chemical at a time, but household dust contains MIXTURES of these chemicals with effects unknown. How does it get into us? Inhalation, ingestion, and through skin contact. And while the levels we are exposed to may be low, research is showing that even low level exposure can have adverse health effects. From Medical Xpress:

Potentially harmful chemicals widespread in household dust

Household dust exposes people to a wide range of toxic chemicals from everyday products, according to a study led by researchers at Milken Institute School of Public Health at the George Washington University. The multi-institutional team conducted a first-of-a-kind meta-analysis, compiling data from dust samples collected throughout the United States to identify the top ten toxic chemicals commonly found in dust. They found that DEHP, a chemical belonging to a hazardous class called phthalates, was number one on that list. In addition, the researchers found that phthalates overall were found at the highest levels in dust followed by phenols and flame retardant chemicals....."The findings suggest that people, and especially children, are exposed on a daily basis to multiple chemicals in dust that are linked to serious health problems." ...continue reading "What’s In Your Household Dust?"

A new report authored by dozens of scientists, health practitioners and children's health advocates is highlighting the (growing annually) evidence that many common and widely available chemicals endanger neurological development in fetuses and children of all ages. The chemicals contribute to such health problems as ADHD, autism spectrum disorders, lowered IQ, behavior disorders, and many other problems. Many of the chemicals have hormonal effects (endocrine disruptors) and interfere with normal hormonal activity. The chemicals of highest concern are all around us and are found in most pregnant women, their fetuses, and in growing children. In fact, in all of us.

Especially worrisome chemicals are:  leadmercury; organophosphate pesticides (used in agriculture and home gardens), phthalates (in medicines, plastics, and personal care products), flame retardants known as polybrominated diphenyl ethers (found in upholstered furniture, car seats), air pollutants produced by the combustion of wood and fossil fuels), and polychlorinated biphenyls (once used as coolants and lubricants in electrical equipment, but still pervasive). It is important to note that out of the thousands of chemicals that people are exposed to, that the great majority of chemicals are untested for neurodevelopmental effects.

Especially alarming is that the U.S. Centers for Disease Control found that 90% of pregnant women in the United States have detectable levels of 62 chemicals in their bodies, out of 163 chemicals for which the women were screened. This shows that we are exposed to mixtures of chemicals - not just to one chemical at a time.  Unfortunately the substitutes for problematic chemicals are NO better than the originals, because they tend to be similar chemically. For example, the substitutes for BPA are just as bad, if not worse, than BPA (bisphenol A). And remember, we are exposed to mixtures of chemicals - not just to one chemical at a time.

The report criticizes current regulatory lapses that allow chemicals to be introduced into people's lives with little or no review of their effects on fetal and child health. "For most chemicals, we have no idea what they're doing to children's neurodevelopment," Professor Schantz (one of the signers of the report) said. "They just haven't been studied." So why aren't policymakers doing something? Why is industry dictating what we're exposed to? Why are chemicals innocent until proven guilty, and even then they're allowed to be used? Who is looking out for the ordinary person, and especially developing children?

From the journal Environmental Health Perspectives: Project TENDR: Targeting Environmental Neuro-Developmental Risks. The TENDR Consensus Statement

Children in America today are at an unacceptably high risk of developing neurodevelopmental disorders that affect the brain and nervous system including autism, attention deficit hyperactivity disorder, intellectual disabilities, and other learning and behavioral disabilities. These are complex disorders with multiple causes—genetic, social, and environmental. The contribution of toxic chemicals to these disorders can be prevented. 

Leading scientific and medical experts, along with children’s health advocates, came together in 2015 under the auspices of Project TENDR: Targeting Environmental Neuro-Developmental Risks to issue a call to action to reduce widespread exposures to chemicals that interfere with fetal and children’s brain development. Based on the available scientific evidence, the TENDR authors have identified prime examples of toxic chemicals and pollutants that increase children’s risks for neurodevelopmental disorders. These include chemicals that are used extensively in consumer products and that have become widespread in the environment. Some are chemicals to which children and pregnant women are regularly exposed, and they are detected in the bodies of virtually all Americans in national surveys conducted by the U.S. Centers for Disease Control and Prevention. The vast majority of chemicals in industrial and consumer products undergo almost no testing for developmental neurotoxicity or other health effects.

Based on these findings, we assert that the current system in the United States for evaluating scientific evidence and making health-based decisions about environmental chemicals is fundamentally broken. To help reduce the unacceptably high prevalence of neurodevelopmental disorders in our children, we must eliminate or significantly reduce exposures to chemicals that contribute to these conditions. We must adopt a new framework for assessing chemicals that have the potential to disrupt brain development and prevent the use of those that may pose a risk. This consensus statement lays the foundation for developing recommendations to monitor, assess, and reduce exposures to neurotoxic chemicals. 

The TENDR Consensus Statement is a call to action to reduce exposures to toxic chemicals that can contribute to the prevalence of neurodevelopmental disabilities in America’s children. The TENDR authors agree that widespread exposures to toxic chemicals in our air, water, food, soil, and consumer products can increase the risks for cognitive, behavioral, or social impairment, as well as specific neurodevelopmental disorders such as autism and attention deficit hyperactivity disorder (ADHD) (Di Renzo et al. 2015; Gore et al. 2015; Lanphear 2015; Council on Environmental Health 2011). This preventable threat results from a failure of our industrial and consumer markets and regulatory systems to protect the developing brain from toxic chemicals. To lower children’s risks for developing neurodevelopmental disorders, policies and actions are urgently needed to eliminate or significantly reduce exposures to these chemicals.

We are witnessing an alarming increase in learning and behavioral problems in children. Parents report that 1 in 6 children in the United States, 17% more than a decade ago, have a developmental disability, including learning disabilities, ADHD, autism, and other developmental delays (Boyle et al. 2011). As of 2012, 1 in 10 (> 5.9 million) children in the United States are estimated to have ADHD (Bloom et al. 2013). As of 2014, 1 in 68 children in the United States has an autism spectrum disorder (based on 2010 reporting data) (CDC 2014).

Many toxic chemicals can interfere with healthy brain development, some at extremely low levels of exposure. Research in the neurosciences has identified “critical windows of vulnerability” during embryonic and fetal development, infancy, early childhood and adolescence (Lanphear 2015; Lyall et al. 2014; Rice and Barone 2000). During these windows of development, toxic chemical exposures may cause lasting harm to the brain that interferes with a child’s ability to reach his or her full potential.

The developing fetus is continuously exposed to a mixture of environmental chemicals (Mitro et al. 2015). A 2011 analysis of the U.S. Centers for Disease Control and Prevention’s (CDC) biomonitoring data found that 90% of pregnant women in the United States have detectable levels of 62 chemicals in their bodies, out of 163 chemicals for which the women were screened (Woodruff et al. 2011). Among the chemicals found in the vast majority of pregnant women are PBDEs, polycyclic aromatic hydrocarbons (PAHS), phthalates, perfluorinated compounds, polychlorinated biphenyls (PCBs), perchlorate, lead and mercury (Woodruff et al. 2011). Many of these chemicals can cross the placenta during pregnancy and are routinely detected in cord blood or other fetal tissues.

The following list provides prime examples of toxic chemicals that can contribute to learning, behavioral, or intellectual impairment, as well as specific neurodevelopmental disorders such as ADHD or autism spectrum disorder: Organophosphate (OP) pesticides, PBDE flame retardants, combustion-related air pollutants, which generally include PAHs, nitrogen dioxide and particulate matter, and other air pollutants for which nitrogen dioxide and particulate matter are markers, lead, mercuryPCBs .

The United States has restricted some of the production, use and environmental releases of these particular chemicals, but those measures have tended to be too little and too late. We face a crisis from both legacy and ongoing exposures to toxic chemicals.....The examples of developmental neurotoxic chemicals that we list here likely represent the tip of the iceberg....Only a minority of chemicals has been evaluated for neurotoxic effects in adults. Even fewer have been evaluated for potential effects on brain development in children (Grandjean and Landrigan 2006, 2014). Further, toxicological studies and regulatory evaluation seldom address combined effects of chemical mixtures, despite evidence that all people are exposed to dozens of chemicals at any given time.

Some chemicals, like those that disrupt the endocrine system, present a concern because they interfere with the activity of endogenous hormones that are essential for healthy brain development. Endocrine-disrupting chemicals (EDCs) include many pesticides, flame retardants, fuels, and plasticizers. One class of EDCs that is ubiquitous in consumer products are the phthalates. These are an emerging concern for interference with brain development and therefore demand attention.

Under our current system, when a toxic chemical or category of chemicals is finally removed from the market, chemical manufacturers often substitute similar chemicals that may pose similar concerns or be virtually untested for toxicity. This practice can result in “regrettable substitution” whereby the cycle of exposures and adverse effects starts all over again. The following list provides examples of this cycle: When the federal government banned some uses of OP pesticides, manufacturers responded by expanding the use of neonicotinoid and pyrethroid pesticides. Evidence is emerging that these widely used classes of pesticides pose a threat to the developing brain (Kara et al. 2015; Richardson et al. 2015; Shelton et al. 2014). 

When the U.S. Government reached a voluntary agreement with flame retardant manufacturers to stop making PBDEs, the manufacturers substituted other halogenated and organophosphate flame retardant chemicals. Many of these replacement flame retardants are similar in structure to other neurotoxic chemicals but have not undergone adequate assessment of their effects on developing brains. When the federal government banned some phthalates in children’s products, the chemical industry responded by replacing the banned chemicals with structurally similar new phthalates. These replacements are now under investigation for disrupting the endocrine system.

More evidence linking endocrine disrupting chemicals such as butyl paraben, triclocarbon, propyl paraben. with negative health effects (here linked to effects on the pregnancy and baby). It is especially important to try to lower exposure to endocrine disruptors during pregnancy. So read labels on all personal care products and avoid all parabens, phthalates, triclocarban, bisphenol-A (BPA), and triclosan - because what you use on your body will get into your body, From Medical Xpress:

Use of personal care products during pregnancy linked to adverse effects in newborns

A study led by SUNY Downstate Medical Center's School of Public Health presents evidence linking personal care products used during pregnancy to adverse reproductive effects in newborns."The study found a link between women with higher levels of butyl paraben, which is commonly used as a preservative in cosmetics, and the following birth outcomes: shorter gestational age at birth, decreased birth weight, and increased odds of preterm birth," says Laura Geer, PhD, MHS, associate professor in the Department of Environmental and Occupational Health Sciences in the School of Public Health at SUNY Downstate.

The antimicrobial compound, triclocarban, mainly added to soaps, was associated with shorter gestational age at birth. Another common chemical added to lotions and creams, propyl paraben, was associated with decreased body length at birth. The long-term consequences of this are not clear, and, Geer adds, "Findings must be reproduced in larger studies."

Dr. Geer says, "Our latest study adds to the growing body of evidence showing that endocrine-disrupting compounds can lead to developmental and reproductive problems in animals and in humans. Effects observed in previous studies mainly came from animal models only." This study presents evidence of potentially adverse impacts in humans. 

Regulations requiring removal of triclosan from various consumer care products have been in place since 2015 in the European Union, but broader regulatory action by the U.S. Food and Drug Administration and the U.S. Environmental Protection Agency has not ensued.

More on this same story from Environmental Health News:  Soap, makeup additives linked to preterm births, smaller babies

Pregnant women in Brooklyn with high levels of certain compounds used in makeup and soaps were more likely to have preterm births and babies that weighed less, according to a new study. The study, published online last week in the Journal of Hazardous Materials, provides the first evidence that germ-killing and preservative chemicals used in cosmetics and soaps might impact newborns’ health. It also bolsters suspicions that chemicals in soaps and lotions disrupt people’s endocrine systems, which are crucial for reproduction and babies’ development.

From 2007 to 2009, Geer and colleagues tested 185 mothers’ third trimester urine, as well as the umbilical cord blood of 34 of them, for a suite of different parabens, used mostly in cosmetics, and triclosan and triclocarban, which are used as antimicrobials in soaps. The mothers were from the University Hospital of Brooklyn’s Prenatal Clinic.

The chemicals, especially the parabens, are common: According to the Environmental Working Group’s Skin Deep database, butylparaben is used in 2,245 personal care products, propylparaben is used in 7,212, and triclocarban is used in 21.

The results don’t prove that the chemicals are behind the birth problems. While scientists know the chemicals have some biological activity, the amount of exposure that could cause problems remains unclear.  Animals exposed to the chemicals have had some reproductive impacts. In rats, triclocarban impacted male sex organ development in a 2008 studyParaben exposure decreased male rat sperm counts and efficiency in a 2002 study. One of the most studied endocrine disrupting chemicals, bisphenol-A or BPA, has been linked to multiple birth defects....Except for some color additives, the U.S. Food and Drug Administration does not regulate cosmetic ingredients.