Skip to content

Another study finding risks from too low vitamin D levels. From Science Daily:

Lower vitamin D level in blood linked to higher premature death rate

Researchers at the University of California, San Diego School of Medicine have found that persons with lower blood levels of vitamin D were twice as likely to die prematurely as people with higher blood levels of vitamin D.

The finding, published in the June 12 issue of American Journal of Public Health, was based on a systematic review of 32 previous studies that included analyses of vitamin D, blood levels and human mortality rates. The specific variant of vitamin D assessed was 25-hydroxyvitamin D, the primary form found in blood.

This new finding is based on the association of low vitamin D with risk of premature death from all causes, not just bone diseases."

Garland said the blood level amount of vitamin D associated with about half of the death rate was 30 ng/ml. He noted that two-thirds of the U.S. population has an estimated blood vitamin D level below 30 ng/ml."This study should give the medical community and public substantial reassurance that vitamin D is safe when used in appropriate doses up to 4,000 International Units (IU) per day," said Heather Hofflich, DO, professor in the UC San Diego School of Medicine's Department of Medicine.

The average age when the blood was drawn in this study was 55 years; the average length of follow-up was nine years. The study included residents of 14 countries, including the United States, and data from 566,583 participants.

From Medical Xpress:

Estimated risk of breast cancer increases as red meat intake increases

Higher red meat intake in early adulthood might be associated with an increased risk of breast cancer, and women who eat more legumes—such as peas, beans and lentils—poultry, nuts and fish might be at lower risk in later life, suggests a paper published BMJ today.

So far, studies have suggested no significant association between  intake and breast cancer. However, most have been based on diet during midlife and later, and many lines of evidence suggest that some exposures, potentially including dietary factors, may have greater effects on the development of breast cancer during early adulthood.

So a team of US researchers investigated the association between dietary protein sources in early adulthood and risk of breast cancer. They analysed data from 88,803 premenopausal women (aged 26 to 45) taking part in the Nurses' Health Study II who completed a questionnaire on diet in 1991. Adolescent food intake was also measured and included foods that were commonly eaten from 1960 to 1980, when these women would have been in high school. 

Medical records identified 2,830 cases of breast cancer during 20 years of follow-up.

This translated to an estimate that higher intake of red meat was associated with a 22% increased risk of breast cancer overall. Each additional serving per day of red meat was associated with a 13% increase in risk of breast cancer (12% in premenopausal and 8% in postmenopausal women).

In contrast, estimates showed a lower risk of breast cancer in postmenopausal women with higher consumption of poultry. Substituting one serving per day of poultry for one serving per day of red meat - in the statistical model - was associated with a 17% lower risk of breast cancer overall and a 24% lower risk of postmenopausal breast cancer.

Furthermore, substituting one serving per day of combined legumes, nuts, poultry, and fish for one serving per day of red meat was associated with a 14% lower risk of breast cancer overall and premenopausal breast cancer.

The authors conclude that higher red meat intake in early adulthood "may be a risk factor for breast cancer, and replacing red meat with a combination of legumes, poultry, nuts and fish may reduce the risk of breast cancer." 

A big benefit to exercising - more microbial diversity, which means a healthier gut microbiome, which means better health. From Medscape:

Exercise Linked to More Diverse Intestinal Microbiome

Professional athletes are big winners when it comes to their gut microflora, suggesting a beneficial effect of exercise on gastrointestinal health, investigators report in an article published online June 9 in Gut.

DNA sequencing of fecal samples from players in an international rugby union team showed considerably greater diversity of gut bacteria than samples from people who are more sedentary.

Having a gut populated with myriad species of bacteria is thought by nutritionists and gastroenterologic researchers to be a sign of good health. Conversely, the guts of obese people have consistently been found to contain fewer species of bacteria, note Siobhan F. Clarke, PhD, from the Teagasc Food Research Centre, Moorepark, Fermoy. "Our findings show that a combination of exercise and diet impacts on gut microbial diversity. In particular, the enhanced diversity of the microbiota correlates with exercise and dietary protein consumption in the athlete group," the authors write.

The investigators used 16S ribosomal RNA amplicon sequencing to evaluate stool and blood samples from 40 male elite professional rugby players (mean age, 29 years) and 46 healthy age-matched control participants. 

Relative to control participants with a high BMI, athletes and control participants with a low BMI had improved metabolic markers. In addition, although athletes had significantly increased levels of creatine kinase, they also had overall lower levels of inflammatory markers than either of the control groups.

Athletes were also found to have more diverse gut microbiota than controls, with organisms in approximately 22 different phyla, 68 families, and 113 genera. Participants with a low BMI were colonized by organisms in just 11 phyla, 33 families, and 65 genera, and participants with a high BMI had even fewer organisms in only 9 phyla, 33 families, and 61 genera.

The professional rugby players, as the investigators expected, had significantly higher levels of total energy intake than the control participants, with protein accounting for 22% of their total intake compared with 16% for control participants with a low BMI and 15% for control participants with a high BMI. When the authors looked for correlations between health parameters and diet with various microbes or microbial diversity, they found significant positive association between microbial diversity and protein intake, creatine kinase levels, and urea.

Two studies that look at the role of diet, weight, and obesity in breast cancer. From Science News:

Fighting cancer with dietary changes 

Calorie restriction during treatment for breast cancer changes cellular programming in a way that lowers the chance of metastases in mice. Breast cancer patients are often treated with hormonal therapy to block tumor growth, and steroids to counteract the side effects of chemotherapy. However, both treatments can cause a patient to have altered metabolism which can lead to weight gain. In fact, women gain an average of 10 pounds in their first year of treatment. Recent studies have shown that too much weight makes standard treatments for breast cancer less effective, and those who gain weight during treatment have worse cancer outcomes.

From Medical Daily:

Breast Cancer Patients Suffering From Obesity Face Higher Death Risk Than Healthy-Weight Women

Obesity increases the risk of another cancer, which adds to the long list of life-threatening health hazards that accompany obesity. A new study reveals more evidence that obesity is a risk factor for cancer prognosis and its development, which will be presented at the annual meeting of the American Society of Clinical Oncology (ASCO) in Chicago on May 30.

Researchers found that out of the 80,000 women in the study who had early stage breast cancer, obesity increased the risk of death by 34 percent for women who were pre-menopausal and were susceptible to higher levels of the hormone estrogen.

"No matter how we look at it, obesity is slated to replace tobacco as the leading modifiable risk for cancer," Dr. Clifford Hudis, ASCO president and chief of Memorial Sloan Kettering Cancer Center's Breast Cancer Medicine Service in New York, announced at a news conference.

Fat tissue produces an excess amount of estrogen, and those with increased levels have been associated with the risk of breast cancer. Obese women unquestionably have more fat tissue, which is why their estrogen levels are naturally higher. This leads to a more rapid growth of estrogen-responsive breast tumors. Obese patients also have increased level of insulin and insulin-like growth factor-1, which has been known to promote the development of tumor tissue.

They did find, as they had expected, there was no link between obesity and breast cancer death risk among women who were postmenopausal and either had an estrogen receptor positive or estrogen receptor negative breast cancer. This meant the tumors did not rely on estrogen to grow at a time in a woman’s life when her estrogen levels are fairly low.

Obesity has been linked to an increased risk of many other common cancers as well, which include colon, pancreas, esophagus, kidney, thyroid, gallbladder, and endometrium. Endometrial cancer is found within the lining of the uterus, and those who are obese increase risk by up to 40 percent.

Please note that in the following study 200 grams is a measure of weight, and a little over a cup of many fruits and vegetables. Some examples: blueberries 1 cup=190 grams, green peas 1 cup=145 grams, but young salad greens 1 cup=20 grams. From Medical Daily:

Consuming Up To 200 Grams Of Fruits And Vegetables Will Decrease Your Stroke Risk

It’s not surprising that fruits and vegetables are the key to various health benefits, and now researchers are emphasizing their importance for reducing the risk of stroke.

In the study, researchers found that the stroke risk declined by 32 percent for the participants who ate 200 grams of fruit per day — and decreased by 11 percent for every 200 grams of daily vegetables. “Improving diet and lifestyle is critical for heart and stroke risk reduction in the general population,” Dr. Yan Qu, senior study author and director of the intensive care unit at Qingdao Municipal Hospital in China, said in a news release. “In particular, a diet rich in fruits and vegetables is highly recommended because it meets micronutrient and macronutrient and fiber requirements without adding substantially to overall energy requirements.”

Authors of the study reviewed 20 studies over the course of 19 years that involved over 760,000 people throughout the U.S., Asia, and Europe. The beneficial effects of fruits and vegetables were apparent across the board in both men and women. 

 

This study was done on mice, but it would be great if it also holds true for human eyes. Another benefit from daily drinking of coffee! From Science Daily:

A cup of coffee a day may keep retinal damage away, study shows

Aside from java's energy jolt, food scientists say you may reap another health benefit from a daily cup of joe: prevention of deteriorating eyesight and possible blindness from retinal degeneration due to glaucoma, aging and diabetes.

Raw coffee is, on average, just 1 percent caffeine, but it contains 7 to 9 percent chlorogenic acid (CLA), a strong antioxidant that prevents retinal degeneration in mice, according to a Cornell study published in theJournal of Agricultural and Food Chemistry (December 2013).

The retina is a thin tissue layer on the inside, back wall of the eye with millions of light-sensitive cells and other nerve cells that receive and organize visual information. It is also one of the most metabolically active tissues, demanding high levels of oxygen and making it prone to oxidative stress. The lack of oxygen and production of free radicals leads to tissue damage and loss of sight.

In the study, mice eyes were treated with nitric oxide, which creates oxidative stress and free radicals, leading to retinal degeneration, but mice pretreated with CLA developed no retinal damage.

Previous studies have shown that coffee also cuts the risk of such chronic diseases as Parkinson's, prostate cancer, diabetes, Alzheimer's and age-related cognitive declines.

Excellent reason to enjoy coffee every day. From Science Daily:

Increasing consumption of coffee associated with reduced risk of type 2 diabetes, study finds

New research published in Diabetologia (the journal of the European Association for the Study of Diabetes) shows that increasing coffee consumption by on average one and half cups per day (approx 360ml) over a four-year period reduces the risk of type 2 diabetes by 11%. 

The authors examined the associations between 4-year changes in coffee and tea consumption and risk of type 2 diabetes in the subsequent 4 years.

The authors used observational data from three large prospective, US-based studies in their analysis: the Nurses' Health Study (NHS) (female nurses aged 30-55 years, 1986-2006), the NHS II (younger female nurses aged 25-42 years 1991-2007), and the Health Professionals Follow-up Study (HPFS) (male professionals 40-75 years, 1986-2006). The final analysis included 48,464 women in NHS, 47,510 women in the NHS II, and 27,759 men in HPFS.

The authors documented 7,269 incident type 2 diabetes cases, and found that participants who increased their coffee consumption by more than 1 cup/day (median change=1.69 cups/day) over a 4-year period had a 11% lower risk of type 2 diabetes in the subsequent 4-years compared to those who made no changes in consumption. Participants who decreased their coffee intake by 1 cup a day or more (median change=-2 cups/day) had a 17% higher risk for type 2 diabetes. Changes in tea consumption were not associated with type 2 diabetes risk.

Those with highest coffee consumption and who maintained that consumption -- referred to as "high-stable consumers" since they consumed 3 cups or more per day -- had the lowest risk of type 2 diabetes, 37% lower than the "low-stable consumers" who consumed 1 cup or less per day.

While baseline decaffeinated coffee consumption was associated with a lower type 2 diabetes risk, the changes in decaffeinated coffee consumption did not change this risk. 

More research on the benefits of exercise. From Science Daily:

Road to fountain of youth paved with fast food ... and sneakers? Exercise may prevent or delay fundamental process of aging

We all know that too much food combined with too little exercise can add up to poor health and disease. But overeating and inactivity also speed up the aging process, right down to our cells. At the end of a cell's lifespan, a process called senescence kicks in -- cells lose the ability to divide and begin to secrete substances that damage the surrounding cells. While unhealthy lifestyle habits can accelerate this process, researchers at the Mayo Clinic wanted to know if increased exercise could counteract it. 

The research team compared mice fed a fast food diet (FFD) for 5 months with those fed a standard chow diet (control). Unlike the controls, the FFD mice developed insulin sensitivity, impaired glucose tolerance, impaired exercise ability, and heart dysfunction. But when the FFD mice were given a running wheel, the exercise began to counteract the effects of a poor diet. White et al. observed a number of improvements including body weight, metabolism, and cardiac function. They also saw a significant decrease in signs of cell senescence and associated inflammation.

"Our data clearly show that poor nutritional choices dramatically accelerate the accumulation of senescent cells, and for the first time, that exercise can prevent or delay this fundamental process of aging. 

Flatulence is good, and up to 18 a day is totally normal! From NPR:

Got Gas? It Could Mean You've Got Healthy Gut Microbes

We know that air often comes after eating nutrient-packed vegetables, such as cabbage, kale and broccoli. And researchers have found that fiber-rich foods, like beans and lentils, boost the levels of beneficial gut bacteria after only a few days, as we reported in December.

So all this got us wondering: Could passing gas, in some instances, be a sign that our gut microbes are busy keeping us healthyAbsolutely, says Purna Kashyap, a gastroenterologist at the Mayo Clinic in Rochester, Minn. "Eating foods that cause gas is the only way for the microbes in the gut to get nutrients," he says. "If we didn't feed them carbohydrates, it would be harder for them to live in our gut."

And we need to keep these colon-dwelling critters content, Kashyap says. When they gobble up food — and create gas — they also make molecules that boost the immune system, protect the lining of the intestine and prevent infections.

"A healthy individual can have up to 18 flatulences per day and be perfectly normal," he adds.

Gas gets into the digestive tract primarily through  two routes: Swallowing air (which we all do when we eat and chew gum) and your microbiome. That's the collection of organisms in the GI tract that scientists and doctors are currently all fired up about. (Check our colleague Rob Stein's recent series on it.) That microbiome includes hundreds of different bacteria. But there are also organisms from another kingdom shacking up with them: the archaea.

All these microbes are gas-making fools. They eat up unused food in your large intestine, like fiber and other carbohydrates we don't digest, and churn out a bunch of gases as waste. But that's not all they make. They also produce a slew of molecules (called short chain fatty acids) that may promote the growth of other beneficial bacteria and archaea.

And the more fiber you feed these friendly inhabitants, the more types of species appear, studies have found. "Undigested carbohydrates allow the whole ecosystem to thrive and flourish," Kashyap says. Most gas made by the microbiome is odorless. It's simply carbon dioxide, hydrogen or methane. But sometimes a little sulfur slips in there."That's when it gets smelly," Kashyap says.

But here's the hitch: Many of the smelly sulfur compounds in vegetables have healthful properties. Take for instance, the broccoli, mustard and cabbage family. These Brassica vegetables are packed with a sulfur compound, called sulforaphane, that is strongly associated with a reduced risk of cancer. Another possible benefit of a little smelly gas? It may reduce the total volume of air in the gut, Kashyap says. 

Good news for those who enjoy drinking a little wine. From Medical Xpress:

A little wine might help kidneys stay healthy

An occasional glass of wine might help keep your kidneys healthy, new research suggests. And for those who already have kidney disease, which puts one at higher risk for cardiovascular problems, moderate wine drinking might help the heart. the researchers added.

"Those [with healthy kidneys] who drank less than one glass of wine a day had a 37 percent lower risk of having chronic kidney disease than those who drank no wine," said study author Dr. Tapan Mehta, a renal fellow at the University of Colorado Anschutz Medical Center, in Aurora.

"Those with chronic kidney disease who drank less than one glass a day had a 29 percent lower risk of cardiovascular events [than those who drank no wine]," he added.

Mehta and his colleagues looked at data from the 2003 to 2006 National Health and Nutrition Examination that included nearly 6,000 people. Of those, about 1,000 had chronic kidney disease.

Having chronic kidney disease increases the risk of cardiovascular disease. About 26 million Americans have chronic kidney disease, often caused by diabetes and high blood pressure, according to the National Kidney Foundation. Previous research has found that moderate drinking is linked to heart benefits.

Exactly why wine might do that is not known for sure, Mehta said. Drinking moderate amounts is linked with lower levels of protein in the urine. In those who have kidney disease, higher protein levels in the urine are linked with an increased risk of progression of kidney disease. The polyphenols found in wine have anti-inflammatory and antioxidant properties, which may help explain the protective heart effects, he said.