Skip to content

For years stores and manufacturers have promoted the advantages of Scotchgard and Teflon nonstick coatings for pots and pans, as stain-proofing for upholstered furniture and rugs, as a water repellent for clothing, for consumer goods such as dental floss, and for grease-proof food wrappers and containers. And yes, people have been convinced - with most cookware sold today being of the nonstick type, and the popularity of sofas and rugs coated with non-stain coatings. But once again, chemicals come with a price and health effects, and unfortunately these particular chemicals are found in all of us in varying levels.

Polyfluorinated chemicals (PFCs) are a class of chemicals that are stain, water, and grease repellent chemicals.They have been found in the blood of more than 98% of the United States population. PFCs stay in the environment and body for many years (thus labeled as "persistent"). Some PFCs: perfluorooctanoic acid, or PFOA, perfluorooctane sulfonate or PFOS, perfluorononanoic acid or PFNA, and perfluorohexane sulfonate or PFHxS.

PFOA was used to make DuPont's popular Teflon coating for decades. DuPont phased out its PFOA production after a settlement with federal regulators (it was linked it to birth defects and cancer in animals). But meanwhile PFOA spread worldwide, and traces of the compound have been found in most people, in polar bears in the Arctic, in some drinking water, and even in some fish. PFCs pass from mothers to their babies during pregnancy, and in breast milk after birth. They are considered hazardous even in small doses, they accumulate, and have been linked to all sorts of medical problems, from developmental delays in the fetus and child, to immune problems, kidney disease, kidney and testicular cancers, and to thyroid disease.

And once again, as some chemicals are phased out, the replacement chemicals may be just as bad. One group of replacement chemicals is perfluoroalkyl sulfonate (PFAS). Experts worry that this new group of PFASs has many of the same troubling characteristics as their predecessors, because of the chemical similarities with the original chemicals. But we won't know for years, because once again the necessary health tests have not been done.

What can you do to avoid PFCs? 1) Do not use Teflon or non-stick pots, pans, and utensils. Use stainless steel or cast iron instead. 2) Avoid Scotchgard or other stain-proofing or stain-resistant treatments on upholstered furniture or rugs. 3) Avoid jackets, rain gear, or other clothing with "water resistant" or "stain resistant" treatments. 4) Try to cut back on foods that come in "grease-proof" containers. Don't use microwave popcorn bags. 5) Don't use dental floss such as Oral-B Glide dental floss (uses PFC), and use unwaxed or natural wax floss instead (such as Toms of Maine floss). 6) Avoid personal care products that contain ingredients that include the words “fluoro” or “perfluoro.

From Medscape: Prenatal Exposure to Household Chemicals Hurts Kids' Cognition

Exposure to common household chemicals such as those found in nonstick cooking pans, upholstery, carpet pads, and electronics during pregnancy may lead to poorer cognitive and behavioral development during childhood, new research shows.

In an analysis of more than 250 mother-child pairs, maternal exposure to polybrominated diphenyl ethers (PBDEs) and perfluoroalkyl substances (PFASs) was associated with impairments in executive function in children aged 5 and 8 years. "These findings suggest that concentrations of maternal serum PBDEs and PFASs during pregnancy may be associated with poorer executive function in school-age children," the investigators, with first author Ann Vuong, DrPH,...."Given that the persistence of PBDEs and PFASs has resulted in detectable serum concentrations worldwide, the observed deficits in executive function may have a large impact at the population level," they add.

In-unit increases in PFOS levels were associated with worse behavior regulation, poorer metacognition, and poorer global executive functioning. No link was found between PFOA levels and executive function. Dr Vuong told Medscape Medical News that although the majority of PBDEs and PFASs have been phased out of products, there is an ongoing risk of exposure."It's in the environment, and probably it's that people have already purchased products within their homes, and everyone has [PBDEs] in their bodies. So the only way to reduce the body burden or exposure is through cleaning methods," she said.

For PBDEs, it is recommended that people regularly use a high-efficiency particulate air (HEPA) filter in their vacuum and that they wipe down surfaces and regularly wash their hands. "For PFASs, it's recommended that you try not to, or limit your use of, microwaved fast food packaging, as well as trying not to use deteriorated pans with nonstick coatings," Dr Vuong added....Although reducing exposure to substances with known neurodevelopmental and cognitive risks is important, Dr Vuong emphasized that the chemicals have been replaced by novel compounds, some of which may carry their own risks.

UPDATE: 2 new articles discussing this issue: New Teflon Toxin Causes Cancer in Lab Animals and How Dupont Concealed the Dangers of the New Teflon Toxin

Flame retardants. All around us, and in us. So, so hard to avoid because they're in electronic goods, in upholstered furniture, polyurethane foam, carpet pads, some textiles, the foam in baby items, house dust, building insulation, and on and on. And unfortunately, while a number of toxic flame retardants have been phased out, it appears that the new replacements may be just as bad and are more easily inhaled (the small particles go down the air tract and into the lung tissue).

What to do? Wash hands before eating. Try to use a vacuum cleaner with a HEPA filter. Try to avoid products that say they contain "flame retardants". Only buy upholstered furniture with tags that say they are flame retardant free. From Environmental Health News:

As Washington state decides on stronger toxics law, residents are breathing flame retardants

A new generation of chemicals added to furniture, building insulation and baby products like car seats to slow the spread of flames are escaping into air at higher levels than previously thought, according to a new study out of Washington state. The findings come as Washington lawmakers decide on bolstering flame retardant bans. The state was one of the first to ban an earlier generation of retardants, known as PBDEs.

The new research found flame retardant chemicals used to replace polybrominated diphenyl ethers (PBDEs) also escape, are ubiquitous in indoor air and suggest inhalation is a major route of exposure for people. The compounds, called chlorinated organophosphate flame retardants, found in the study have been linked to cancer and reproductive problems, and some can alter hormones essential for development. “We’ve been underestimating what total exposure is,” said Erika Schreder, staff scientist at the Washington Toxics Coalition and lead author of the study published this month in the scientific journal Chemosphere.

Researchers gave 10 people from Washington state an air sampler that simulates breathing to wear during a normal day: office work, commuting, hanging out at home. They tested for a suite of the new generation of chlorinated flame retardants and found all 10 were breathing some amount of them throughout the day. Exposure to one of the most prevalent compounds was up to 30 times greater than ingesting the chemicals via dust. The distinction is important: dust exposure occurs largely through the mouth, previously thought to be the major exposure route for banned PBDEs.

Chlorinated flame retardants are used mostly in polyurethane foam, often in building insulation and everyday products such as furniture, children’s car seats and baby strollers. The compounds are substitutes for PBDEs, which were widely used as flame retardants until scientists reported they were building up in people and wildlife and various bans took hold.

While chlorinated flame retardants have been around for decades, Salamova said scientists have recently started to understand them as, at first, it was thought they weren’t harmful or able to accumulate in people and wildlife. However there is evidence the replacement are following the same path as PBDEs: chlorinated flame retardants have been found in household dust, children’s products, drinking water, and mother-toddlers pairsTwo chlorinated flame retardants have been flagged by the state of California as carcinogens, and animal research suggests they may hamper brain development as well. 

From Medical Xpress: Prenatal exposure to flame retardants linked to poorer behavioral function in children

New research from the University of Cincinnati (UC) College of Medicine suggests that prenatal exposure to flame retardants and perfluoroalkyl substances (PFASs) commonly found in the environment may have a lasting effect on a child's cognitive and behavioral development, known as executive function...."We examined the relationship between prenatal exposure to PBDEs and PFASs and executive function in children at 5 and 8 years of age," said Ann Vuong, DrPH, a postdoctoral fellow at the University of Cincinnati in the Department of Environmental Health. "The findings suggest that maternal serum concentrations of PBDEs and perfluorooctane sulfonate (PFOS), one of the most commonly found PFASs in human blood, may be associated with poorer executive functioning in school-age children."

From Science Daily: Exposure to common flame retardants may contribute to attention problems in children

Prenatal exposure to some flame retardants that have been widely-used in consumer products is associated with attention problems in young children. A new study is the first to show the effects of prenatal exposure to polybrominated diphenyl ethers on children's development at ages 3, 4, and 7 years. Children with the highest exposure to certain PBDEs had approximately twice the number of maternally-reported attention problems compared to the other children in the study. PBDEs are found in textiles, plastics, wiring, and furniture containing polyurethane foam to reduce flammability.

Very nice and thorough report about flame retardants written in 2013 by the highly regarded center EHHI (Environment and Human Health, Inc.): FLAME RETARDANTS THE CASE FOR POLICY CHANGE

A very popular herbicide – currently the most widely applied pesticide in the world – is glyphosate, commonly known as Roundup. Global use was 1.65 billion pounds in 2014 , while overall use in the US was 276.4 million pounds in 2014. Glyphosate is a human carcinogen and linked to various health effects, and even though it is so extensively used, the FDA just announced in February 2016 that they will “soon” start testing for its presence and actual levels in food for the first time in the agency’s history.

What, it never occurred to them that the most widely used pesticide in the world would be found in food?  Of course they knew glyphosate residues were occurring in food because in 2013 the EPA raised "tolerance limits" for human exposure to glyphosate for certain foods, stating with "reasonable certainty that no harm will result" from human exposure to the chemical. This increase in tolerance levels came about from a request from Monsanto (the manufacturer of the glyphosate herbicide Roundup), and even though numerous groups protested the increase, the EPA went along with Monsanto's request. Some tolerances doubled.

But remember.... there are very strong industry pressures on the EPA, and so the EPA seems to keep its head firmly in the sand for all sorts of pesticide issues. Maybe their motto is: see no evil...hear no evil....

The reason that glyphosate tolerance limits needed to be increased in the USA is because Roundup Ready crops are now so extensively planted, and this has resulted in skyrocketing use of glyphosate in the last 20 years. Roundup Ready crops are genetically modified to tolerate repeated glyphosate spraying (against weeds)  during the growing season. However, the crops take up and accumulate  glyphosate, and so glyphosate residues are increasing in crops. Another reason for increased residue of glyphosate in crops is the current practice of applying an herbicide such as Roundup right at the time of harvest to non-GMO crops such as wheat, so that the crop dies at once and dries out (pre-harvest crop dessication), and which is called a "preharvest application" by Monsanto. Glyphosate is now off-patent so many other companies are also using glyphosate in their products throughout the world.

Private testing has already found glyphosate residues in breast milk, soybeans, corn, honey, cereal, wheat flour, soy sauce, and infant formula. It is currently unknown what glyphosate residues in food, which we then ingest, mean for human health. Several studies have linked glyphosate to human health ailments, including non-Hodgkin lymphoma and kidney and liver problems. Of special concern is that because glyphosate is so pervasive in the environment, even trace amounts might be harmful due to chronic exposure. Some people (including researchers) are even suggesting that much of "gluten sensitivity" or "gluten intolerance" that people complain of, may actually be sensitivity to glyphosate residues in food.

So where have glyphosate residues been found recently? In Germany's 14 most popular beers. German beer purity in question after environment group finds weed-killer traces And in feminine hygiene products in France. How to lower your daily intake of glyphosate? Eat organic foods as much as possible, including wheat, corn, oats, soybeans.

Some influential scientists and physicians just came out with a Statement of Concern regarding their serious concerns with glyphosate. The article summary (Abstract) from Environmental Health: Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement

The broad-spectrum herbicide glyphosate (common trade name “Roundup”) was first sold to farmers in 1974. Since the late 1970s, the volume of glyphosate-based herbicides (GBHs) applied has increased approximately 100-fold. Further increases in the volume applied are likely due to more and higher rates of application in response to the widespread emergence of glyphosate-resistant weeds and new, pre-harvest, dessicant use patterns. GBHs were developed to replace or reduce reliance on herbicides causing well-documented problems associated with drift and crop damage, slipping efficacy, and human health risks. Initial industry toxicity testing suggested that GBHs posed relatively low risks to non-target species, including mammals, leading regulatory authorities worldwide to set high acceptable exposure limits. To accommodate changes in GBH use patterns associated with genetically engineered, herbicide-tolerant crops, regulators have dramatically increased tolerance levels in maize, oilseed (soybeans and canola), and alfalfa crops and related livestock feeds.

Animal and epidemiology studies published in the last decade, however, point to the need for a fresh look at glyphosate toxicity. Furthermore, the World Health Organization’s International Agency for Research on Cancer recently concluded that glyphosate is “probably carcinogenic to humans.” In response to changing GBH use patterns and advances in scientific understanding of their potential hazards, we have produced a Statement of Concern drawing on emerging science relevant to the safety of GBHs. Our Statement of Concern considers current published literature describing GBH uses, mechanisms of action, toxicity in laboratory animals, and epidemiological studies. It also examines the derivation of current human safety standards.

We conclude that: (1) GBHs are the most heavily applied herbicide in the world and usage continues to rise; (2) Worldwide, GBHs often contaminate drinking water sources, precipitation, and air, especially in agricultural regions; (3) The half-life of glyphosate in water and soil is longer than previously recognized; (4) Glyphosate and its metabolites are widely present in the global soybean supply; (5) Human exposures to GBHs are rising; (6) Glyphosate is now authoritatively classified as a probable human carcinogen; (7) Regulatory estimates of tolerable daily intakes for glyphosate in the United States and European Union are based on outdated science. We offer a series of recommendations related to the need for new investments in epidemiological studies, biomonitoring, and toxicology studies that draw on the principles of endocrinology to determine whether the effects of GBHs are due to endocrine disrupting activities. We suggest that common commercial formulations of GBHs should be prioritized for inclusion in government-led toxicology testing programs such as the U.S. National Toxicology Program, as well as for biomonitoring as conducted by the U.S. Centers for Disease Control and Prevention.

 Lyme disease is caused by the bacterium Borrelia burgdorferi and is typically treated with antibiotics. This study may go a long way in explaining why some people do not seem to respond to Lyme disease treatment, and why they continue to feel sick even after prolonged antibiotic therapy. The researchers discussed how, in addition to the familiar spirochete form, B. burgdorferi can transform from spirochetes into round body forms in the presence of various unfavorable environmental conditions, including the presence of antimicrobial agents (antibiotics). And that the different forms respond to different antibiotic treatments!

But now they found that this bacterium has an additional form, which they refer to as biofilm, and which may be resistant to even very aggressive antibiotic (antimicrobial) treatments. They say this is the first study that demonstrates the presence of Borrelia biofilm in infected human skin tissues. From Medical Xpress:

Lyme disease 'Biofilm' eludes antibiotics: report

In many cases, Lyme disease returns after a patient has completed antibiotic treatment, and this finding may help explain why that occurs, the researchers said. University of New Haven researchers determined that Lyme disease-causing Borrelia burgdorferi bacteria produces a biofilm that makes it up to 1,000 times more resistant to antibiotics than other bacteria.

The discovery may lead to new ways to treat Lyme disease, said study author Eva Sapi, head of biology and environmental sciences at the university. "These findings could change the way we think about Lyme disease, especially in patients where it seems to be a persistent disease, despite long-term antibiotic treatment," she said in a news release from the Connecticut-based university.

"This recent finding could help to better understand how Borrelia can survive treatment and ... will provide novel therapeutic targets for chronic Lyme disease, with the hope of eradicating Borrelia in these patients," Sapi added. (original study)

 Borrelia burgdorferi  Credit: CDC

A new study has confirmed an association between proton pump inhibitors (PPIs) — drugs that treat heartburn, peptic ulcers, and other acid-related disorders of the upper gastrointestinal tract — and increased risk for dementia in older patients. An earlier study by the same researchers found the same link between PPI use and dementia risk. The drugs work by lowering the amount of acid produced by the stomach. PPIs are among the most frequently prescribed drugs, and include omeprazole (Losec), esomeprazole (Nexium), lansoprazole (Prevacid), and the over-the-counter medication Olex.

The U.S. Food and Drug Administration have warned people to take them for the shortest period possible, namely a few weeks, and only for serious acid reflux, ulcers, or stomach bleeding. Other problems linked to long-term use are: fractures, pneumonia, increased rates of C. difficile, low magnesium levels, and chronic kidney disease. From Science Daily:

Proton pump inhibitors may be associated with increased risk of Dementia

The use of proton pump inhibitors, the popular medications used to treat gastroesophageal reflux and peptic ulcers, may be associated with an increased risk of dementia in a study using data from a large German health insurer, according to an article published online by JAMA Neurology.  The use of proton pump inhibitors (PPIs) has increased among older patients and PPIs are among the most frequently used classes of drugs.

Britta Haenisch, Ph.D., of the German Center for Neurodegenerative Diseases, Bonn, Germany, and coauthors examined the association between the use of PPIs and the risk of dementia using data from 2004 to 2011 on inpatient and outpatient diagnoses and drug prescriptions. Regular PPI use was at least one PPI prescription in each quarter of an 18-month interval.

The study population included 218,493 individuals 75 or older before 144,814 individuals were excluded, leaving 73,679 individuals included in the final analysis. The authors identified 29,510 patients who developed dementia during the study period. Regular users of PPIs (2,950 patients, mostly female and average age nearly 84) had a 44 percent increased risk of dementia compared with those (70,729 patients, mostly female and average age 83) not receiving PPI medication, according to the results.

"The present study can only provide a statistical association between PPI use and risk of dementia. The possible underlying causal biological mechanism has to be explored in future studies. 

Very exciting research IF it pans out - the idea of treating (some) cancers with probiotics (beneficial bacteria). This study was done on mice, and some mice started the probiotic mixture one week before they gave the mice the liver cancer, so...more limitations there. But the idea is so tantalizing and wonderful... And what was in the mixture of bacteria (called probiotic Prohep) that the mice ate that had beneficial results of shrinking liver tumors? The probiotic Prohep is composed of Lactobacillus rhamnosus GG (LGG), Escherichia coli Nissle 1917 (EcN), and heat inactivated VSL#3 (1:1:1).  VSL#3 contains: Streptococcus thermophilus, Bifidobacterium breve, Bifidobacterium longum, Bifidobacterium infantis, Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus paracasei, and Lactobacillus delbrueckii. Note that Lactobacillus rhamnosus and some of the others are already found in many probiotic mixtures. From Medical Xpress:

Probiotics dramatically modulate liver cancer growth in mice

Medical research over the last decade has revealed the effects of the gut microbiome across a range of health markers including inflammation, immune response, metabolic function and weight....Previous studies have demonstrated the beneficial role of probiotics in reducing gastrointestinal inflammation and preventing colorectal cancer, but a new study published in the Proceedings of the National Academy of Sciences explored their immunomodulatory effects on extraintestinal tumors: specifically, in hepatocellular carcinoma (HCC)HCC is the most common type of liver cancer, and though it is relatively uncommon in the United States, it's the second-most deadly type of cancer worldwide and is particularly prevalent in regions with high rates of hepatitis. 

The researchers designed a study in a mouse model of HCC that quantified the immunological effects of a novel probiotic formulation called Prohep. They fed the mice Prohep for a week prior to tumor inoculation, and they observed a 40 percent reduction of tumor weight and size compared with control animals. Further, they established that the beneficial effects of the probiotics were closely related to the abundance of beneficial bacteria promoted by Prohep. These bacteria produce anti-inflammatory metabolites, which regulated pro-inflammatory immune cell populations via crosstalk between the gut and the liver tumor.

Among their findings, the researchers report that the probiotics reduced liver tumor growth by inhibiting angiogenesis, the process by which the body generates new blood vessels from existing ones, which is essential for tumor growth. They found significantly raised levels of hypoxic GLUT-1+, indicating that tumor reductions were due to hypoxia caused by reduced blood flow. Further, the tumors in the treated mice had 52 percent lower blood vessel area and 54 percent fewer vessel sprouts than the untreated mice.

They also determined that Prohep treatment down-regulated IL-17, a pro-inflammatory angiogenic factor. Because HCC is a highly vascularized tumor, the cancer is generally associated with high levels of IL-17 and an immune T-cell called T helper 17 (Th17), which is transported from the gut to HCC tumors via circulation. The researchers believe that reduced Th17 in tumor cells impedes the inflammation and angiogenesis and limits tumor growth. It's not surprising that they also found that probiotics increased the anti-inflammatory bacteria and metabolites present in the guts of treated mice. They conclude that Prohep intake has the capability of inhibiting tumor progression by modulating the gut microbiota.

Another microbe that causes Lyme disease! Lyme disease is the most common tick-borne disease in the northern hemisphere, and it is caused by the bacteria Borrelia burgdorferi. Recently Mayo Clinic researchers found a new bacteria, which they named Borrelia mayonii, in the fluids and tissues of some people diagnosed with Lyme disease in the upper midwestern USA. The symptoms are different from typical Lyme disease: with nausea and vomiting, diffuse rashes (rather than a single bull's-eye rash), and a higher concentration of bacteria in the blood. Same treatment as with the original bacteria , but it may not show up in tests for Lyme disease.

Other researchers say that other Borrelia species found throughout the US and Europe also cause Lyme disease. This may explain why Lyme diseasse sufferers are not always diagnosed with Lyme disease, even though they have it. From Scientific American:

New Cause for Lyme Disease Complicates Already Murky Diagnosis

Tick-borne Lyme disease in the U.S. has long been thought to be caused by a single microbe, a spiral-shaped bacterium called Borrelia burgdorferi. Last week this notion was challenged when a team led by scientists at the Mayo Clinic discovered that Lyme could be caused, albeit rarely, by a different bacterial species that may incite more serious symptoms ranging from vomiting to neurological issues. Scientists working in the contentious field of Lyme disagree, however, as to what this information means for public health and if these findings are truly the first of their kind. For years, they say, research has pointed to the notion that the spirochete that causes Lyme disease in the U.S. is more heterogeneous than many have acknowledged ...continue reading "Another Microbe That Causes Lyme Disease"

Two new papers just published in the British Journal of Nutrition are analyses of existing studies that compare conventional vs organic milk, and conventional vs organic red meat. Both studies found clear differences between organic meat and milk compared to conventional milk and meat, with the organic milk and meat best health-wise, especially due to differences in fatty acids. The researchers stated: "organic bovine (cow) milk has a more desirable fatty acid composition than conventional milk".

Some of the differences may be due to organic milk and beef coming from cattle that graze on grass (organic farming standards require  grazing/forage-based diets), while most conventional milk and beef come from cows subsisting on grain. Beneficial omega-3 is much more prevalent in grass than in grain, which is why organic livestock and milk also contain higher levels, while omega-6 levels were lower in organic meat and dairy.

The researchers did not look at antioxidant, vitamin and mineral concentrations between the meat groups because there weren't enough studies to look at. Two years ago, Dr. Leifert led a similar review for fruits and vegetables that found organic produce had higher levels of some antioxidants and less pesticide residue than conventionally grown crops. From Medical Xpress:

New study finds clear differences between organic and non-organic milk and meat

In the largest study of its kind, an international team of experts led by Newcastle University, UK, has shown that both organic milk and meat contain around 50% more beneficial omega-3 fatty acids than conventionally produced products. Analyzing data from around the world, the team reviewed 196 papers on milk and 67 papers on meat and found clear differences between organic and conventional milk and meat, especially in terms of fatty acid composition, and the concentrations of certain essential minerals and antioxidants.  ...continue reading "Clear Differences Between Organic and Non-Organic Milk and Meat"

Some studies with humans suggest that cancer growth is slowed with exercise, better cancer prognosis with regular exercise, and lowered cancer recurrence (e.g., exercise after prostate cancer diagnosis), but a recent study looked at the issue more in depth.

Yes, it was done in mice, but this way mice could be randomly assigned to different treatments (including various cancers - both fast and slow growing ones) and conditions in ways you can't with humans.

Why does exercise have these beneficial effects? Various suggestions include exercise causing changes in body composition, or sex hormone levels, or systemic inflammation, and changes in immune cell function. The researchers point out that cells of the immune system play dual roles in cancer: the immune system has a powerful capacity to combat cancer, but chronic inflammation has also been linked to formation of tumors (cancer). Thus, "mobilization" of cancer killing "immune cells during exercise might represent an indirect defense mechanism against cancer growth."

Bottom line: research suggests that exercise or vigorous activity is beneficial in those with cancer diagnosis.

From Science Daily: Running helps mice slow cancer growth

Here's one more benefit of exercise: mice who spent their free time on a running wheel were better able to shrink tumors (a 50% reduction in tumor size) compared to their less active counterparts. Researchers found that the surge of adrenaline that comes with a high-intensity workout helped to move cancer-killing immune (NK) cells toward lung, liver, or skin tumors implanted into the mice. The study appears Feb. 16, 2016 in Cell Metabolism.

"It is known that infiltration of natural killer (NK) immune cells can control and regulate the size of tumors, but nobody had looked at how exercise regulates the system," says senior study author Pernille Hojman, at the University of Copenhagen. "In our experiments, we tried to inject our mice with adrenaline to mimic this increase you see during exercise, and when we do that we see that the NK cells are mobilized to the bloodstream, and if there's a tumor present then the NK cells will find the tumor and home to it."

Hojman and her colleagues next used mice depleted of NK cells to show that the increase in number of NK cells at the site of the tumor was directly contributing to the reduction in size. Even with exercise and a full suite of other immune cells, without the NK cells these mice experienced the normal rate of cancer growth. Blocking the function of adrenaline also blunted the cancer-killing benefits of the running wheel.

The research group also discovered that an immune signaling molecule called IL-6 was the link between adrenaline-dependent mobilization of NK cells and tumor infiltration. It's known that IL-6 is released from muscle tissue during exercise, but Hojman presents evidence that adrenaline specifically hails IL-6 sensitive NK cells and that the IL-6 molecules helped guide the immune cells to the tumors.

"As someone working in the field of exercise and oncology, one of the main questions that cancer patients always ask is: how should I exercise? Can we do anything?" she says. "While it has previously been difficult to advise people about the intensity at which they should exercise, our data suggest that it might be beneficial to exercise at a somewhat high intensity in order to provoke a good epinephrine surge and hence recruitment of NK cells." (http://www.cell.com/cell-metabolism/pdf/S1550-4131(16)30003-1.pdf)

The finding that the oral bacteria Streptococcus mutans, which is found in 10% of the population, is linked with hemorrhagic strokes is big. S. mutans is found in tooth decay or cavities (dental caries). The researchers found a link with cnm-positive S. mutans with both intracerebral hemorrhage (ICH) and also with cerebral microbleeds.

Some risk factors for strokes have long since been known, such as high blood pressure and advanced age, but then there are those hemorrhagic strikes that don't seem to fit the norm, with no apparent risk factors. Well, apparently the presence of cnm-positive S. mutans is one. My understanding of what cnm-positive S. mutans means is S. mutans bacteria that carries the collagen-binding Cnm gene. This bacteria can be found in a person's saliva and in dental plaque, and swabs of both were taken for this study.

This study builds on other studies that find a link between the bacteria Streptococcus mutans and a number of systemic diseases, including bacteremia, infective endocarditis and hemorrhagic stroke. The researchers of this latest study suggest that infection with cnm-positive S. mutans causes constant inflammation (as shown by 2 inflammatory markers: CRP and fibrinogen), which then causes damage to blood vessels (endothelial damage) in the brain. Bottom line: take care of your teeth and gums.

From Science Daily: Oral bacteria linked to risk of stroke

In a study of patients entering the hospital for acute stroke, researchers have increased their understanding of an association between certain types of stroke and the presence of the oral bacteria (cnm-positive Streptococcus mutans).

In the single hospital study, researchers at the National Cerebral and Cardiovascular Center in Osaka, Japan, observed stroke patients to gain a better understanding of the relationship between hemorrhagic stroke and oral bacteria. Among the patients who experienced intracerebral hemorrhage (ICH), 26 percent were found to have a specific bacterium in their saliva, cnm-positive S. mutans. Among patients with other types of stroke, only 6 percent tested positive for the bacterium.

Strokes are characterized as either ischemic strokes, which involve a blockage of one or more blood vessels supplying the brain, or hemorrhagic strokes, in which blood vessels in the brain rupture, causing bleeding.

The researchers also evaluated MRIs of study subjects for the presence of cerebral microbleeds (CMB), small brain hemorrhages which may cause dementia and also often underlie ICH. They found that the number of CMBs was significantly higher in subjects with cnm-positive S. mutans than in those without. The authors hypothesize that the S. mutans bacteria may bind to blood vessels weakened by age and high blood pressure, causing arterial ruptures in the brain, leading to small or large hemorrhages.

"This study shows that oral health is important for brain health. People need to take care of their teeth because it is good for their brain and their heart as well as their teeth," Friedland said. "The study and related work in our labs have shown that oral bacteria are involved in several kinds of stroke, including brain hemorrhages and strokes that lead to dementia."

Multiple research studies have shown a close association between the presence of gum disease and heart disease, and a 2013 publication by Jan Potempa, Ph.D., D.Sc., of the UofL School of Dentistry, revealed how the bacterium responsible for gum disease worsens rheumatoid arthritisThe cnm-negative S. mutans bacteria is found in approximately 10 percent of the general population, Friedland says, and is known to cause dental cavities (tooth decay). Friedland also is researching the role of oral bacteria in other diseases affecting the brain.  http://www.nature.com/articles/srep20074