Skip to content

Another study finding brain changes from playing tackle football - this time measurable brain changes were found in boys 8 to 13 years old after just one season of playing football. None of the boys had received a concussion diagnosis during the season. The changes in the white matter of the brain (and detected with magnetic resonance imaging (MRI) were from the cumulative subconcussive head impacts that occur in football - the result of repetitive hits to the head during games and practices.

No one knows if the brains of football players fully recover after the football season. But these findings are worrisome. Especially because last year researchers found that NFL players who had begun playing  football before age 12 had a higher risk of altered brain development, as compared to players who started later (see post). Currently nearly 3 million students participate in youth tackle football programs across the United States. Some are calling for young players to only play flag or touch football, and to only play tackle football starting with the teenage years. From Science Daily:

Brain changes seen in youth football players without concussion

Researchers have found measurable brain changes in children after a single season of playing youth football, even without a concussion diagnosis, according to a new study published online in the journal Radiology.

"Most investigators believe that concussions are bad for the brain, but what about the hundreds of head impacts during a season of football that don't lead to a clinically diagnosed concussion? We wanted to see if cumulative sub-concussive head impacts have any effects on the developing brain," said the study's lead author, Christopher T. Whitlow, M.D., Ph.D., M.H.A., associate professor and chief of neuroradiology at Wake Forest School of Medicine in Winston-Salem, N.C.

The research team studied 25 male youth football players between the ages of 8 and 13. Head impact data were recorded using the Head Impact Telemetry System (HITs), which has been used in other studies of high school and collegiate football to assess the frequency and severity of helmet impacts....The study participants underwent pre- and post-season evaluation with multimodal neuroimaging, including diffusion tensor imaging (DTI) of the brain. DTI is an advanced MRI technique, which identifies microstructural changes in the brain's white matter. 

The brain's white matter is composed of millions of nerve fibers called axons that act like communication cables connecting various regions of the brain. Diffusion tensor imaging produces a measurement, called fractional anisotropy (FA), of the movement of water molecules in the brain and along axons. In healthy white matter, the direction of water movement is fairly uniform and measures high in FA. When water movement is more random, FA values decrease, which has been associated with brain abnormalities in some studies.

The results showed a significant relationship between head impacts and decreased FA in specific white matter tracts and tract terminals, where white and gray matters meet. "We found that these young players who experienced more cumulative head impact exposure had more changes in brain white matter, specifically decreased FA, in specific parts of the brain," Dr. Whitlow said. "These decreases in FA caught our attention, because similar changes in FA have been reported in the setting of mild TBI."

It is important to note that none of the players had any signs or symptoms of concussion."We do not know if there are important functional changes related to these findings, or if these effects will be associated with any negative long-term outcomes," Dr. Whitlow said. "Football is a physical sport, and players may have many physical changes after a season of play that completely resolve. These changes in the brain may also simply resolve with little consequence. However, more research is needed to understand the meaning of these changes to the long-term health of our youngest athletes." [Original study]

Image result for soccer ball Many studies have discussed the short-term and long-term harm to the brain from playing tackle football, especially when starting the game at an early age (before the age of 12) , and from getting concussions and sub-concussions. But relatively little has been said about the possibility of similar harm from soccer (see post).

Finally a study looking at the practice of heading the ball in soccer - where yes, the person is directly hitting the soccer ball with his or her head, whether during a game or routine heading practice. Any harm from that? Yes. There were measurable brain function changes in both male and female young adults after heading a soccer ball 20 times during one practice session. While the changes ("short and long term memory function and corticomotor inhibition") were temporary, the researchers were concerned over possible long term brain effects (perhaps similar to those found in football players) when there are many practice sessions and soccer games, over many years. From Science Daily:

Heading a soccer ball causes instant changes to the brain

Researchers from the University of Stirling have explored the true impact of heading a soccer ball, identifying small but significant changes in brain function immediately after routine heading practice. The study from Scotland's University for Sporting Excellence published in EBioMedicine is the first to detect direct changes in the brain after players are exposed to everyday head impacts, as opposed to clinical brain injuries like concussion.

A group of soccer ball players headed a ball 20 times, fired from a machine designed to simulate the pace and power of a corner kick. Before and after the heading sessions, scientists tested players' brain function and memoryIncreased inhibition in the brain was detected after just a single session of heading. Memory test performance was also reduced by between 41 and 67 per cent, with effects normalising within 24 hours. Whether the changes to the brain remain temporary after repeated exposure to a soccer ball and the long-term consequences of heading on brain health, are yet to be investigated.

Played by more than 250 million people worldwide, the 'beautiful game' often involves intentional and repeated bursts of heading a ball. In recent years the possible link between brain injury in sport and increased risk of dementia has focused attention on whether soccer ball heading might lead to long term consequences for brain health.

Cognitive neuroscientist Dr Magdalena Ietswaart from Psychology at the University of Stirling, said: "In light of growing concern about the effects of contact sport on brain health, we wanted to see if our brain reacts instantly to heading a soccer ball. Using a drill most amateur and professional teams would be familiar with, we found there was in fact increased inhibition in the brain immediately after heading and that performance on memory tests was reduced significantly.

"Although the changes were temporary, we believe they are significant to brain health, particularly if they happen over and over again as they do in soccer ball heading. With large numbers of people around the world participating in this sport, it is important that they are aware of what is happening inside the brain and the lasting effect this may have." In the study, scientists measured levels of brain function using a basic neuroscience technique called Transcranial Magnetic Stimulation (TMS).  (Original study)

We all know that exercise is beneficial for health. Research suggests that exercising out in nature is best for several varied reasons -  including that it lowers markers of inflammation, and that it's good for our gut microbiome (community of gut microbes). The following excerpts are written by Dr. John La Puma encouraging other doctors to prescribe exercise for their patients and why.

An important message of his is that exercise is more important than a drug prescription for a number of conditions, including diabetes prevention, reducing the risk of recurrence of several cancers (he mentions breast cancer, but it also holds for prostate cancer). While exercising and walking out in nature may be best, any exercise anywhere is better than no exercise. (Other posts on exercise as prescription medicine are here and here; and check the category exercise for all exercise research posts).

From Medscape: Rx: Exercise Daily -- Outdoors. Doctor's Orders

With dazzling Olympic feats on display all summer, too many of my patients are still literally immobilized. Medically, sitting too long shuts off the enzyme lipoprotein lipase. In people who are sedentary, the enzyme doesn't break down fat to create energy, like it should. But medical prescription for exercise has lagged even the slowest runner. Why? Some reasons are time, training, and money. Time especially is a scarce commodity: The average clinician visit lasts just 20 minutes. Fitness is a shamefully small part of medical training. And as doctors, we don't get paid for discussing exercise, let alone monitoring a prescription and assessing the response. 

Finally, there are practical reasons. Clinicians find it difficult to persuade patients that exercise is more effective than medication for any number of conditions, including stroke recovery, diabetes prevention, and treatment of low back pain. Regular exercise reduces the risk for recurrent breast cancer by approximately 50%. Given all these reasons, it's easy to see why fitness prescriptions are seldom more than an afterthought. Yet even without formally prescribing the frequency, intensity, time, and type of exercise, clinicians can speak with patients and families about fitness in inspiring, life-changing ways.

Because clinicians have a secret weapon to use that most people don't even know about—location. Exercising in nature (in sight of and preferably near water or greenery, whether a deserted beach or an urban park) is better. Walking city streets and the office itself can be harder on your health than you think. In both environments, your attention is demanded and directed—sometimes by digital interruptions, sometimes by vehicles, toxins, or duties. In nature, your attention is drawn, not pushed, to a variety of often unexpected but not unpleasant sounds, colors, aromas, textures, and forms.

A recent Stanford study of nature therapy showed significantly reduced rumination after a 90-minute walk in nature, compared with a 90-minute walk through an urban environment. On MRI, "nature walkers" showed lower activity in an area of the brain linked to risk for mental illness, the subgenual prefrontal cortex, compared with "urban walkers." In other words, nature offers a sense of something bigger than ourselves on which to focus. MRIs show the way the brain changes when that sense occurs to us.

Exercising in nature may improve a person's immune system by enriching the diversity in the microbiota. Microbiota buffer the immune system against chronic stress-related disease. They appear to act as a hormone-producing organ, not simply a collection of beneficial bacteria. Microbiota are sensitive and responsive to physical environmental changes as well as dietary ones. So, exercise in nature may favorably boost microbiota.

And finally, exercise in nature is clinically preferred and calming. A Norwegian study showed that exercise in nature and in view of nature improves both mood and diastolic blood pressure vs exercise without nature. A Chinese study showed higher energy levels, and lower levels of interleukin-6 and tumor necrosis factor (both markers of inflammation), in a forest walking group compared with an urban exercising group. A British study showed significantly improved mood and self-esteem with "green" exercise, with the largest benefits from 5-minute engagements. Five minutes!

Of course, there are areas in our country and world in which it is dangerous to walk, never mind exercise. It may not be as easy to generate sweat and intensity with outdoor exercise as it is with indoor exercise. It may be stormy, or baking hot, or otherwise harsh outside, and the cool recesses of one's own bedroom or the gym may be just perfect for you today. And with the 2013 total cost of inactivity estimated at $24.7 billion for the United States, and with the public sector bearing almost one half of that expense, any exercise anywhere is better than none.  Yet physicians have a therapeutic tool few others in our culture wield—a prescription pad—and we have every patient's attention, at least for a few minutes. Patients try harder when doctors advise them about fitness. 

What happens to your brain when you stop exercising? The results of this Univ. of Maryland study should be a wake up call for those who are not quite convinced of exercise's health benefits to the brain. The researchers examined cerebral blood flow in athletes (ages 50-80 years, who were recruited from running clubs) before and after a 10-day period during which they stopped all exercise. Using MRI brain imaging techniques, they found a significant decrease in blood flow to several brain regions important for cognitive health, including the hippocampus, after they stopped their exercise routines.

As the researchers pointed out: "...the take home message is simple -- if you do stop exercising for 10 days, just as you will quickly lose your cardiovascular fitness, you will also experience a decrease in blood brain flow." The only good news was that there were no differences on cognitive measures both before and after stopping exercise for 10 days. From Science Daily:

Use it or lose it: Stopping exercise decreases brain blood flow

We all know that we can quickly lose cardiovascular endurance if we stop exercising for a few weeks, but what impact does the cessation of exercise have on our brains? New research led by University of Maryland School of Public Health researchers examined cerebral blood flow in healthy, physically fit older adults (ages 50-80 years) before and after a 10-day period during which they stopped all exercise. Using MRI brain imaging techniques, they found a significant decrease in blood flow to several brain regions, including the hippocampus, after they stopped their exercise routines.

"We know that the hippocampus plays an important role in learning and memory and is one of the first brain regions to shrink in people with Alzheimer's disease," says Dr. J. Carson Smith, associate professor of kinesiology and lead author of the study, which is published in Frontiers in Aging Neuroscience in August 2016. "In rodents, the hippocampus responds to exercise training by increasing the growth of new blood vessels and new neurons, and in older people, exercise can help protect the hippocampus from shrinking. So, it is significant that people who stopped exercising for only 10 days showed a decrease in brain blood flow in brain regions that are important for maintaining brain health."

The study participants were all "master athletes," defined as people between the ages of 50 and 80 (average age was 61) who have at least 15 years history of participating in endurance exercise and who have recently competed in an endurance event. Their exercise regimens must have entailed at least four hours of high intensity endurance training each week. On average, they were running 36 miles (59 km) each week or the equivalent of a 10K run a day! Not surprisingly, this group had a V02 max (maximum volume of oxygen) above 90% for their age. This is a measure of the maximal rate of oxygen consumption of an individual and reflects their aerobic physical fitness.

Dr. Smith and colleagues measured the velocity of blood flow in brain with an MRI scan while they were still following their regular training routine (at peak fitness) and again after 10 days of no exercise. They found that resting cerebral blood flow significantly decreased in eight brain regions, including the areas of the left and right hippocampus and several regions known to be part of the brain's "default mode network" -- a neural network known to deteriorate quickly with a diagnosis of Alzheimer's disease. This information adds to the growing scientific understanding of the impact of physical activity on cognitive health.

  Again, another study showing the importance of lifestyle factors in the development of protein buildups in the brain that are associated with the onset of Alzheimer's disease. Specifically, the study found that each one of several lifestyle factors—a healthy body mass index, physical activity and a Mediterranean diet, were linked to lower levels of plaques and tangles on brain scans in people who already had mild memory changes, (but not dementia). Other posts discussing Mediterranean diet and brain health (brain volume, etc.) are here, here, and here. Activity levels and brain health posts are here, here, and here. From Medical Xpress:

Diet and exercise can reduce protein build-ups linked to Alzheimer's

A study by researchers at UCLA's Semel Institute for Neuroscience and Human Behavior has found that a healthy diet, regular physical activity and a normal body mass index can reduce the incidence of protein build-ups that are associated with the onset of Alzheimer's disease.

In the study, 44 adults ranging in age from 40 to 85 (mean age: 62.6) with mild memory changes but no dementia underwent an experimental type of PET scan to measure the level of plaque and tangles in the brain. Researchers also collected information on participants' body mass index, levels of physical activity, diet and other lifestyle factors. Plaque, deposits of a toxic protein called beta-amyloid in the spaces between nerve cells in the brain; and tangles, knotted threads of the tau protein found within brain cells, are considered the key indicators of Alzheimer's.

The study found that each one of several lifestyle factors—a healthy body mass index, physical activity and a Mediterranean diet—were linked to lower levels of plaques and tangles on the brain scans. (The Mediterranean diet is rich in fruits, vegetables, legumes, cereals and fish and low in meat and dairy, and characterized by a high ratio of monounsaturated to saturated fats, and mild to moderate alcohol consumption.)

"The fact that we could detect this influence of lifestyle at a molecular level before the beginning of serious memory problems surprised us," said Dr. David Merrill, the lead author of the study, which appears in the September issue of the American Journal of Geriatric Psychiatry.

Earlier studies have linked a healthy lifestyle to delays in the onset of Alzheimer's. However, the new study is the first to demonstrate how lifestyle factors directly influence abnormal proteins in people with subtle memory loss who have not yet been diagnosed with dementia, Merrill said. Healthy lifestyle factors also have been shown to be related to reduced shrinking of the brain and lower rates of atrophy in people with Alzheimer's."The study reinforces the importance of living a healthy life to prevent Alzheimer's, even before the development of clinically significant dementia," Merrill said. 

 The last post pointed out that the importance of high levels of physical activity or exercise in reducing the risk of 5 diseases. Now a study points out that all this exercise (starting at about 3 to 5 hours of exercise per week) can result in the heart becoming enlarged from all this exercise ("athlete's heart"), and that this is totally normal and healthy. The researchers also stressed that doctors should be aware that athlete's heart or "exercise-related cardiac remodeling" can occur not only in professional athletes, but also in those engaging in moderate levels of exercise, and that it not be misdiagnosed as heart disease. From Science Daily:

Regular exercise can lead to heart disease misdiagnosis

Scientists have shown that people who exercise for even a few hours each week can enlarge their hearts. This is a normal and beneficial response to exercise, but until now has only been recognised in athletes. The researchers say that doctors should now consider an individual's activity level before diagnosing common heart conditions.

"It's well known that the hearts of endurance athletes adapt in response to exercise, a phenomenon called 'athlete's heart'. This study is the first to show that healthy adults who do regular exercise may also develop enlarged hearts. As a result, there's a risk that some active adults could be misdiagnosed with heart disease," says Declan O'Regan, of the MRC Clinical Sciences Centre, based at Imperial College London, and one of the lead scientists on the research. The findings were published today in Circulation: Cardiovascular Imaging.

Scientists have not previously known the extent to which the hearts of healthy people adapt to the demands of moderate exercise. Over 1000 people took part in this study, making it one of the largest of its kind. Participants selected one of four possible categories that best represented their activity level over the past year, according to how many hours of exercise they did each week. Around one third of participants reported doing three to five hours of exercise, and the scientists found that one in five of these people had developed an enlarged heart as a result. Similar adaptations were seen in almost half of those who reported doing more than five hours of exercise.

The findings suggest that above a threshold of three hours, the more exercise you do, the more your heart is likely to adapt, and the more the exercise, the more pronounced the changes. "Going to the gym frequently increases the thickness of your heart muscle and the volume of your heart chambers, particularly the right ventricle. It's a completely normal, healthy response. It shouldn't be misdiagnosed as being heart disease," says O'Regan. These adaptations allow the heart to pump more blood, which helps to supply exercising muscles with the oxygen and nutrients they need. Changes to the heart's thickness and volume happen in tandem, and this distinguishes them from the changes seen in disease, which occur in isolation.

Today, doctors across the world use a standard of set values to see if the thickness and volume of a person's heart fall into the healthy or abnormal range. This helps to ensure consistency between different hospitals. According to O'Regan, the data that underpins these ranges comes from a relatively small study with people who were mainly sedentary. He says, "In this latest study, we looked at a much larger and broader group of people. We found that more people reported being active than had done in previous studies. Our recommendations reflect this growing participation in exercise.".....And this interesting research shows that even moderate physical activity is associated with changes in the heart's size and shape, which are visible on a cardiac MRI.

Get active, really active, to reduce your risk for 5 diseases: breast cancer, colon cancer, heart disease, and ischemic stroke. Instead of the 150 minutes of brisk walking or 75 minutes per week of running (which is equal to the 600 metabolic equivalent (MET) minutes now recommended by the World Health Organization), this study found that much more exercise is needed for best health results.

This study (which was a review and analysis of 174 studies) found that there is a dose-response effect, with the most reduction in the risk of the 5 conditions by getting 3000 to 4000 MET minutes per week. This sounds like a lot, but the researchers  point out that this can be achieved by incorporating exercise into your daily routines. The researchers write: "A person can achieve 3000 MET minutes/week by incorporating different types of physical activity into the daily routine—for example, climbing stairs 10 minutes, vacuuming 15 minutes, gardening 20 minutes, running 20 minutes, and walking or cycling for transportation 25 minutes on a daily basis would together achieve about 3000 MET minutes a week."

So start thinking creatively about how to increase exercise or activity into your daily life, especially moderate or vigorous intensity activity. For example, park your car far from the store door, or better yet, bicycle or walk to the store from home. From Medscape:

Get Moving: High Physical-Activity Level Reduces Risk of 5 Diseases

High levels of physical activity can reduce the risk for five major diseases, including type 2 diabetes, new research shows. Findings from the systematic review and meta-analysis were published online ....The data, from a total 174 studies comprising 149,184,285 total person-years of follow-up, suggest that the more total regular daily physical activity one engages in — including recreation, transportation, occupational activity, and/or daily chores — the lower the risks for breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke.

However, significant reductions in those conditions were seen only with total activity levels considerably higher than the minimum 600 metabolic equivalent (MET) minutes per week recommended by the World Health Organization for health benefits. That 600 METs equates to about 150 minutes/week of brisk walking or 75 minutes/week of running. (A MET is defined as the ratio of the metabolic rate during that activity to the metabolic rate when resting.) Risks of the five conditions dropped significantly with an increase in MET minutes per week from 600 to 3000 to 4000, with less additive benefit seen above that level.

For reference, the authors say, "a person can achieve 3000 MET minutes/week by incorporating different types of physical activity into the daily routine — for example, climbing stairs 10 minutes, vacuuming 15 minutes, gardening 20 minutes, running 20 minutes, and walking or cycling for transportation 25 minutes on a daily basis would together achieve about 3000 MET minutes a week." "This amount might seem a bit large, but this is about total activity across all domains of life.…For people who currently don't exercise, clinicians could encourage them to incorporate physical activity into their daily routines, [such as] turning household chores into exercise. 

Another recent meta-analysis of trials involving more than one million individuals indicated that an hour of moderate-intensity activity, such as brisk walking or cycling, offsets the health risks of 8 hours of sitting. The message that physical inactivity is a killer — leading to 5.3 million premature deaths annually worldwide, which is as many as caused by smoking and twice as many as associated with obesity, has been emerging over the past few years, with warnings that "sitting is the new smoking."

This new research is the first meta-analysis to quantify the dose-response association between total physical activity across all domains and the risk of five chronic diseases. The 174 prospective cohort studies included 35 for breast cancer, 19 for colon cancer, 55 for diabetes, 43 for ischemic heart disease, and 26 for ischemic stroke. (Some included more than one end point.)....Higher levels of total physical activity were associated with lower risks of all five outcomes.

With the development of diabetes, for example, compared with no physical activity, those with 600 MET minutes per week (the minimum recommended level of activity) had a 2% lower risk. That risk reduction jumped by an additional 19% with an increase from 600 to 3600 METs/week. Gains were smaller above that, with the increase of total activity from 9000 to 12,000 MET minutes/week yielding only an additional 0.6% diabetes reduction.

Overall, compared with insufficiently active individuals (total activity < 600 MET minutes/week), the risk reduction for those in the highly active category (≥ 8000 MET minutes/week) was 14% for breast cancer; 21% for colon cancer; 28% for diabetes; 25% for ischemic heart disease; and 26% for ischemic stroke

Credit: Medscape

Image result for cherries wikipedia Another study reporting health benefits of drinking tart cherry juice, specifically in speeding recovery following prolonged, repeat sprint activity (think soccer and rugby). The researchers found that after a prolonged, intermittent sprint activity, the cherry juice significantly lowered levels of Interleukin-6, a marker for inflammation and that there was a decrease in muscle soreness.  The study participants drank the cherry juice (1 oz cherry juice concentrate mixed with 100 ml water) for several days before and several days after the sprint activity. Montmorency tart cherry juice is a polyphenol rich food that is already used by many professional sports teams to aid recovery. From Medical Xpress:

New study: Montmorency tart cherry juice found to aid recovery of soccer players

Montmorency tart cherry juice may be a promising new recovery aid for soccer players following a game or intense practice. A new study published in Nutrients found Montmorency tart cherry juice concentrate aided recovery among eight semi-professional male soccer players following a test that simulated the physical and metabolic demands of a soccer game .The U.K. research team, led by Glyn Howatson at Northumbria University, conducted this double-blind, placebo-controlled study to identify the effects of Montmorency tart cherry juice on recovery among a new population of athletes following prolonged, intermittent exercise..... many teams in professional and international soccer and rugby already use Montmorency tart cherry juice to aid recovery."

The study involved 16 semi-professional male soccer players aged 21 to 29 who were randomly assigned to either a Montmorency tart cherry concentrate group or a placebo control group. Montmorency group participants consumed about 1 ounce (30 ml) of a commercially available Montmorency tart cherry juice concentrate mixed with 100 ml of water twice per day (8 a.m. and 6 p.m.) for seven consecutive days—for four days prior to the simulated trial and for three days after the trial. Following the same schedule, placebo group participants consumed a calorie-matched fruit cordial with less than 5 percent fruit mixed with water and maltodextrin. The 30 ml dosage of Montmorency tart cherry juice concentrate contained a total anthocyanin content of 73.5 mg, or the equivalent of about 90 whole Montmorency tart cherries.

Montmorency tart cherry juice, compared to a placebo, was found to maintain greater functional performance, impact a key marker of inflammation and decrease self-reported muscle soreness among study participants following prolonged activity that mirrors the demands of field-based sports. While additional research is needed, the authors suggest the dampening of the post-exercise inflammatory processes may be responsible.

Across every performance measure, including maximal voluntary isometric contraction, countermovement jump height, 20 m sprint time, knee extensors, 5-0-5 agility, the Montmorency group showed better performance than the placebo group. Additionally, the Montmorency group showed significantly lower levels of Interleukin-6, a marker for inflammation, particularly immediately post-trial. Ratings for muscle soreness (DOMS) were significantly lower in the Montmorency group across the 72-hour post-trial period. No significant effects in muscle damage or oxidative stress were observed in either the Montmorency group or the placebo group. These data support previous research showing similar results for athletes performing marathon running, high-intensity strength training, cycling, and metabolic exercise. 

A new study followed adults with meniscus tears (in the knee), who were randomly assigned to either exercise only or meniscus repair surgery (arthroscopic partial meniscectomy) only. They found that after 2 years there was no difference between those  who just received exercise therapy compared to those who just received meniscus repair surgery. About 19% of the exercise only group decided to get surgery at some point, but the rest stayed in the exercise only group.

The study in BMJ says that the exercise therapy program consisted of progressive neuromuscular and strength exercises over 12 weeks, which were performed between two and a maximum of three sessions each week (24-36 sessions). Once again, a study shows that surgery for a condition may not be necessary. From Science Daily:

Most surgical meniscus repairs are unnecessary

Three out of four people could avoid knee surgery with a new form of exercise therapy, with significant cost savings for society. Injury to the menisci, the cartilaginous discs within the knee joint, can be painful when running, and can cause the knee to give way or 'lock'. Such injuries are troublesome and sometimes painful, and can prevent you from exercising or attending work. A new study shows that exercise therapy is just as effective for treating meniscus injuries as surgery. .

A total of 140 patients with meniscus injuries in Norway and Denmark took part in the study. They drew lots for treatment with either exercise or surgery. Nina Jullum Kise says, "Two years later, both groups of patients had fewer symptoms and improved functioning. There was no difference between the two groups." However, those who had exercised had developed greater muscular strength. This is consistent with previous research, which showed that surgery yielded no additional benefits for patients who had had exercise therapy.... Jullum Kise believes that as many as three in four could be spared surgery with the right exercise therapy programme. 

In the study, the patients attended training sessions with a physiotherapist 2-3 times a week for 12 weeks. "The exercise therapy programme involves a warm up and various types of strength training. It is built up in stages that become more challenging as the patient improves and becomes stronger," explains Dr Jullum Kise. Each patient receives a personalized training programme, and learns to do the exercises under the supervision of a physiotherapist.

Menisci are crescent-shaped discs of cartilage on both sides of the knee joint. The meniscus is a shock absorber that distributes weight across the joint and at the same time stabilizes the joint when you walk or run. "We hope that the stronger muscles of the exercise therapy group may counteract osteoarthritis, a type of arthritis that often occurs in patients who have undergone surgery for a meniscus injury," says Dr Jullum Kise.

Everyone lifting light weights during exercise workouts will be heartened by a study that found that lifting light  weights (many times) is just as good as lifting heavy weights in building muscle strength and size. 49 young men, who had been resistance training for at least 2 years, were randomly assigned to either the light weight or heavy weight group and followed for 12 weeks. All of the men gained muscle strength and size, and these gains were almost identical, whether they lifted heavy or light weights.

The researchers decided that the key to getting stronger was muscle fatigue - they had to weight lift until they had almost total muscle fatigue, which researchers refer to as "volitional failure". Whether it was with light or heavy weights didn't make a difference. From Science Daily:

Pumping iron: Lighter weights just as effective as heavier weights to gain muscle, build strength

New research from McMaster University is challenging traditional workout wisdom, suggesting that lifting lighter weights many times is as efficient as lifting heavy weights for fewer repetitions. It is the latest in a series of studies that started in 2010, contradicting the decades-old message that the best way to build muscle is to lift heavy weights. "Fatigue is the great equalizer here," says Stuart Phillips, senior author on the study and professor in the Department of Kinesiology. "Lift to the point of exhaustion and it doesn't matter whether the weights are heavy or light."

Researchers recruited two groups of men for the study -- all of them experienced weight lifters -- who followed a 12-week, whole-body protocol. One group lifted lighter weights (up to 50 per cent of maximum strength) for sets ranging from 20 to 25 repetitions. The other group lifted heavier weights (up to 90 per cent of maximum strength) for eight to 12 repetitions. Both groups lifted to the point of failure.

Researchers analyzed muscle and blood samples and found gains in muscle mass and muscle fibre size, a key measure of strength, were virtually identical....While researchers stress that elite athletes are unlikely to adopt this training regime, it is an effective way to get stronger, put on muscle and generally improve health.

Another key finding was that none of the strength or muscle growth were related to testosterone or growth hormone, which many believe are responsible for such gains."It's a complete falsehood that the short-lived rise in testosterone or growth hormone is a driver of muscle growth," says Morton. "It's just time to end that kind of thinking."