Skip to content

Image result for volunteers working wikipedia Is volunteering good for you? People volunteer to benefit others, but there has been some debate over whether volunteer activities also benefit the volunteers. A multi-country European study found that volunteering is associated with better self-rated health and also household income when compared to people who don't volunteer. The volunteers had a health score which was equivalent to being 5 years younger than those who did not volunteer.

People were interviewed and asked “How is your health in general?” The participants could choose from five categories ranging from “very bad” to “very good” - so the people themselves rated their health. This way how people rated their own health might include “physical, mental and social well-being", thus including health indicators that are hard to measure - such as pain, suffering, or depression. The researchers found that volunteer activities are also associated with a higher household income, but note that other studies find that a higher household income is associated with better health. All these are associations in this study - can't say that one causes the other (causal). The researchers themselves say that after analyzing the data, the results show that the association between volunteering and self-rated health is stronger (a "direct association") than the "indirect" association with household income.

The overall rate of people participating in volunteer activities was 24.1%., while 75.9% did not participate in volunteer activities, but this varied from country to country. For example, in Germany, the Netherlands and Norway more than 40% of people volunteered, but in Bulgaria, Hungary and Lithuania fewer than 10% engaged in volunteering activities. From Science Daily:

Volunteers are in better health than non-volunteers

Researchers of Ghent University analysed data on volunteering, employment and health of more than 40,000 European citizens. Their results, just published in PLOS ONE, show that volunteering is associated with better employment and health outcomes. Even after controlling for other determinants of health (gender, age, education level, migrant status, religiosity and country of origin), volunteers are substantially in better health than non-volunteers. Doctoral researcher Jens Detollenaere: “This association is comparable in size to the health gains of being a man, being five years younger or being a native (compared to being a migrant).”....Volunteers have, after controlling for the aforementioned personal characteristics, a higher income and this higher income is associated with better health.

The researchers put forward three other explanations for an association between volunteering and health. Professor Sara Willems: “Firstly, volunteering may improve access to psychological resources (such as self-esteem and self-efficacy) and social resources (such as social integration and access to support and information), both of which are found to have an overall positive effect on health. Secondly, volunteering increases physical and cognitive activity, which protects against functional decline and dementia in old age. Finally, neuroscience research has related volunteering to the release of the caregiving-related hormones oxytocin and progesterone, which have the capacity to regulate stress and inflammation.”

The research results are based on data from the sixth round of the European Social Survey (conducted in 2012 and 2013). This survey measures the beliefs, preferences and behaviour of more than 40000 citizens of 29 European countries....[Original study.]

Image result for apple tree wikipedia This post continues the discussion of antibiotics and their overuse. Antibiotic resistance is increasing due to misuse of antibiotics (or antimicrobials), and this is occurring throughout the world (post with video of how superbugs evolve). This is because bacteria are constantly evolving against the antibiotics they're exposed to. We may reach a point where simple cuts or infections could lead to death because no antibiotics will work. The World Health Organization (WHO) in 2016 said that bacterial resistance to antibiotics is “one of the biggest threats to global health." Especially scary are the bacteria resistant to numerous antibiotics - the superbugs

According to the CDC: "Each year in the United States, at least 2 million people become infected with bacteria that are resistant to antibiotics and at least 23,000 people die each year as a direct result of these infections."

Part of the problem is that farmers are still giving antibiotics (antimicrobials) to farm animals unnecessarily, typically as "growth promoters" or to try to prevent disease. Currently about 80% of all antibiotics used in the US are given to livestock animals (of which nearly 70 percent of those used are considered “medically important” for humans). But what is typically ignored is that farmers also use antibiotics, or antimicrobials, on crops (plant agriculture). In both instances - conventional farming uses antibiotics, but NOT organic farming. Another reason to support organic farming and to eat organic foods.

The nonprofit organization Beyond Pesticides has just released a report discussing antibiotic use in conventional farming (both crops and animals), and how this is contributing to "bacterial resistance to critical life-saving human medicines", and also how organic farming does not use antibiotics. The report discusses that while antibiotic use in animal agriculture is widely acknowledged as harmful, the use of antibiotics in conventional crop production is also harmful. Antibiotics are used because plants can get bacterial diseases (e.g.,bacterial canker, soft rot, and bacterial wilt) The report even discusses fish farming, how antibiotics are used routinely in seafood imported from other countries, and also how some fungicides are used as antibiotics (to "manage" or kill bacteria).

What antibiotics are used in agriculture? For starters - glyphosate (in the pesticide Roundup), which is the most widely used pesticide in the world. Glyphosate is patented by its manufacturer (Monsanto) for its antibacterial properties - thus an antibiotic. As a result, glyphosate is the most widely used antibiotic in agriculture and around homes, gardens, schools, and communities in the U.S. Other antibiotics used widely in farming (especially for fruit trees) are oxytetracycline and streptomycin - which are used in the production of apples, pears, peaches, beans, celery, peppers, tomatoes, and potatoes. The government allows antibiotic residues to remain on the foods ("tolerances for residues on foods") when we buy them in grocery stores.

The report also points out that: The main health impacts of antibiotic residues in food are the promotion of antibiotic resistance and disruption of the microbiota in the human gut. Which means that the microbial communities in our gut can be affected in a negative way. It's well worth reading the 7 page easy to read report - with lots of photos, graphs, and good explanations. Beyond Pesticides: Agricultural Uses of Antibiotics Escalate Bacterial Resistance

5

Image result for eyes A recent study had great results in preventing glaucoma or stopping the progress of glaucoma by supplementing the diet of mice with vitamin B3 (nicotinamide). But now the research needs to see if this also holds true for humans.

Glaucoma is a common neurodegenerative disease that results in vision loss. Two main risk factors are increasing age and high intraocular pressure (pressure in the eye). The researchers said that their next step is testing B3 in human glaucoma patients. So stay tuned...

Vitamin B3, also known as niacin, is an essential vitamin for health, but both deficiencies and too high doses have negative health effects. It is recommended that adults get between 14 mg to 18 mg of niacin per day. Since it is not stored in the body (the excess will be excreted in urine), then you need to get a continuous supply from your diet.

As seen in so many other studies of vitamins and minerals, there is no evidence of adverse effects from the consumption of naturally occurring niacin in foods, but one can get too much from supplements (along with negative health effects).

What foods are good sources of B3 (niacin)? Foods highest in B3 (niacin) are tuna, chicken, turkey, but other good sources are anchovies, salmon, sardines, red meat, peanuts, nuts, seeds, eggs, mushrooms, dairy foods. lentils, beans, potatoes, and grain products.

From Medical Xpress: Vitamin B3 prevents glaucoma in laboratory mice

In mice genetically predisposed to glaucoma, vitamin B3 added to drinking water is effective at preventing the disease, a research team led by Jackson Laboratory Professor and Howard Hughes Medical Investigator Simon W.M. John reports in the journal Science. ...continue reading "Vitamin B3 and Glaucoma"

A new study found differences in gut microbes between active women (they exercised at least the recommended amount) and those that are sedentary. When the gut bacteria were analyzed with modern tests (genetic sequencing) the active women had more of the health promoting beneficial bacteria such as Faecalibacterium prausnitzii, Roseburia hominis, and Akkermansia muciniphila than the sedentary women. The sedentary women also had some bacterial species not seen in the active women. The researchers said that exercise "modifies the composition of gut microbiota" (the gut microbes) in a way beneficial for health.

And what is the recommended minimal amount of exercise? The World Health Organization recommends at least 3 days of exercise per week for 30 minutes at a moderate intensity. Note that exercise can mean doing exercises, but it can also include walking briskly, intense housework (scrubbing, vacuuming with lots of bending, etc.), gardening (digging, raking, etc), or shoveling snow, etc. In this study the group of active women had at least 3 hours of physical exercise per week. Note that a sedentary lifestyle is associated with a high incidence of chronic diseases such as cardiovascular disease, cancer and diabetes, while physical exercise or activity has metabolic and immune health benefits (prevents disease).

But...reading the full study, the research also showed that the active group ate more fruits and vegetables - which we know has an effect on the gut microbiome and feeds beneficial bacteria. Although the diets of the 2 groups of women were similar in total carbohydrates, protein and fat content eaten, the active women ate more fruits, vegetables, and fiber, and the sedentary group ate more processed meat. So it looks like both exercise and a good amount of fruits and vegetables may be important for nurturing beneficial bacteria. By the way, the 3 species of beneficial bacteria mentioned currently are not found in any probiotic supplements on the market. (Earlier posts on the beneficial F. prausnitzii and Akkermansia muciniphila). From C. Bressa et al research article in PLoS ONE:

Differences in gut microbiota profile between women with active lifestyle and sedentary women

Physical exercise is a tool to prevent and treat some of the chronic diseases affecting the world’s population. A mechanism through which exercise could exert beneficial effects in the body is by provoking alterations to the gut microbiota, an environmental factor that in recent years has been associated with numerous chronic diseases. Here we show that physical exercise performed by women to at least the degree recommended by the World Health Organization can modify the composition of gut microbiota. Using high-throughput sequencing of the 16s rRNA gene, eleven genera were found to be significantly different between active and sedentary women. Quantitative PCR analysis revealed higher abundance of health-promoting bacterial species in active women, including Faecalibacterium prausnitzii, Roseburia hominis and Akkermansia muciniphila. Moreover, body fat percentage, muscular mass and physical activity significantly correlated with several bacterial populations. In summary, we provide the first demonstration of interdependence between some bacterial genera and sedentary behavior parameters, and show that not only does the dose and type of exercise influence the composition of gut microbiota, but also the breaking of sedentary behavior. ...continue reading "Gut Microbe Differences Between Active and Sedentary Women"

1

Another study is adding to the evidence that food packaging  is frequently coated  with harmful chemicals - called perfluorinated chemicals or PFCs. The chemicals are used because they resist grease and stains, but unfortunately they then leach into the food, and when people eat the food - it gets into them. The evidence is also growing that these chemicals have all sorts of harmful health effects, including endocrine disruption (they are hormone disruptors) - even in low doses. They are linked to kidney and testicular cancer, high blood cholesterol levels, thyroid problems, development and immune system problems, low birth weights, and decreased sperm quality. (See earlier post) The list keeps growing each year.

Researchers tested about 400 pieces of food packaging from 27 fast food chains,  including McDonald’s, Burger King, Taco Bell, Chick-Fil-A, Quiznos, Starbucks, and Dunkin’ Donuts (see how they scored). Overall, about 33 percent of the packages contained fluorine (a chemical not found in paper, but is an indicator of perfluorinated chemicals present to make the packaging grease and stain resistant). What is even more disturbing is that when the researchers more closely examined 20 samples to find out exactly what fluorinated compounds they contained - they found that 6 of the more rigorously tested packages contained PFOA (which was used in Teflon). PFOA was phased out for use in the USA years ago due to it being so long-lasting in the environment and its serious health effects, but other countries still produce it. Unfortunately, even the replacement chemicals  seem to be similarly harmful (not surprising because of the chemical similarities), and they also persist in the environment.

It should be pointed out that perfluorinated chemicals are also used in products such as stain and water resistant coatings on clothing, upholstery, carpeting and floor waxes. They are in non-stick coatings in pots and pans. The chemicals leach or migrate out of products and degrade very slowly — thus showing up in air, household dust, water, dirt, wildlife, and people. Yes, studies show that almost everyone in the U.S. has these chemicals in their blood, and unfortunately some of them can stay in the body for years. PFCs pass from mothers to their babies during pregnancy, and in breast milk after birth. Exposure to perfluorinated chemicals from fast food packaging is of big concern for children, because one-third of U.S. children consume fast food daily, and children may be especially susceptible to the adverse health effects.

Yes, we are surrounded by a sea of harmful chemicals that are tough to avoid, but we should at least try to minimize our exposure. Fast food restaurants should be encouraged to use nontoxic alternatives (e.g., aluminum foil or wax paper) - after all, the study showed that there is packaging out there without these chemicals.

What can we do to avoid PFCs? 1) Try to avoid or eat less fast food and food that comes in "grease-proof" containers. 2) Don't use non-stick pots and pans - use stainless steel instead. 3) Try to avoid clothing, upholstered furniture, and carpets with stain and water-resistant coatings. 4) Don't use microwave popcorn bags, and try to avoid microwaving foods in their packaging - use a glass dish instead. 5) Don't use dental floss such as Oral-B Glide dental floss (uses PFC), and use unwaxed or natural wax floss instead. 6) Avoid personal care products that contain ingredients that include the words “fluoro” or “perfluoro". *Please check out the Environmental Working Group site for more information (here and here).

From Science Daily: Extensive use of fluorinated chemicals in fast food wrappers: Chemicals can leach into food

Americans may be consuming fast food wrapped in paper treated with perfluorinated chemicals (PFCs) -- the same chemicals used in stain-resistant products, firefighting materials and nonstick cookware, according to a new study published in the journal Environmental Science & Technology.

Researchers tested more than 400 samples of packaging materials, including hamburger and sandwich wrappers, pastry bags, beverage cups and French fry containers, and found evidence of fluorinated compounds called per- and polyfluoroalkyl substances (PFASs). Of the materials tested, these chemicals were found in 56 percent of dessert and bread wrappers, 38 percent of sandwich and burger wrappers and 20 percent of paperboard.

Previous studies have shown that these PFASs can migrate, contaminating the food and, when consumed, accumulating in the body....Previous studies have linked PFASs to kidney and testicular cancers, thyroid disease, low birth weight and immunotoxicity in children, among other health issues. The chemicals have an especially long half-life and take many years before just 50 percent of the intake leaves the human body. The results are concerning when considering the role of fast food in the American diet. The National Center for Health Statistics reported one-third of U.S. children consume fast food daily.

Samples were collected from a total of 27 fast food restaurant chains including McDonald's, Burger King, Chipotle, Starbucks, Jimmy Johns, Panera and Chick-Fil-A, in and around Boston, San Francisco, Seattle, Washington, D.C., and Grand Rapids, Michigan. The study did not include takeout containers, such as Chinese food boxes or pizza boxes. [Original study]

Another study finding a link between air pollution and negative health effects - this time a higher incidence of decline in cognitive functioning  and dementia in older women (65 and older) exposed to fine particles (PM2.5 ). These extremely small particles from vehicle emissions are a major source of urban air pollution throughout the world. These results match other studies finding a link with urban air pollution, especially vehicle traffic, to negative effects on the brain (dementia, cognitive decline, shrinking of the brain, etc.). The researchers also exposed mice to this air pollution for 15 weeks and then studied their brains for evidence of degenerative effects in their brains - and yes, they did find them.

The researchers found that the adverse effects of fine particulate air pollution was stronger in both women and mice who had the APOE4 gene, a genetic variation that increases the risk for Alzheimer's disease. They said that while the air pollution has negative effects in general, that having the APOE4 gene interacted with the air pollution. The researchers also wrote that the mice studies they did showed that "...exposure to urban airborne particulates can intensify amyloid accumulation and neurodegeneration". Medical Xpress:

Air pollution may lead to dementia in older women

Tiny air pollution particles—the type that mainly comes from power plants and automobiles—may greatly increase the chance of dementia, including Alzheimer's disease, according to USC-led research. Scientists and engineers found that older women who live in places with fine particulate matter exceeding the U.S. Environmental Protection Agency's standard are 81 percent more at risk for global cognitive decline and 92 percent more likely to develop dementia, including Alzheimer's.

If their findings hold up in the general population, air pollution could be responsible for about 21 percent of dementia cases, according to the study. "Microscopic particles generated by fossil fuels get into our body directly through the nose into the brain," said University Professor Caleb Finch at the USC Leonard Davis School of Gerontology and co-senior author of the study. "Cells in the brain treat these particles as invaders and react with inflammatory responses, which over the course of time, appear to exacerbate and promote Alzheimer's disease.

The adverse effects were stronger in women who had the APOE4 gene, a genetic variation that increases the risk for Alzheimer's. "Our study .....provides the inaugural scientific evidence of a critical Alzheimer's risk gene possibly interacting with air particles to accelerate brain aging," said Jiu-Chiuan Chen, co-senior author of the study....[Their study] adds to an emerging body of research from around the world that links air pollution to dementia. The offending pollutants—known as PM2.5—are fine, inhalable particles with diameters 2.5 micrometers or smaller. A human hair is about 70 micrometers in diameter, making it 30 times larger than the largest PM2.5. The researchers analyzed data of 3,647 65- to 79-year-old women from the Women's Health Initiative Memory Study (WHIMS). These women lived across 48 states and did not have dementia when they enrolled.

USC scientists chronically exposed female mice carrying the APOE4 gene to nano-sized air pollution for 15 weeks. Compared to the control group, mice predisposed to Alzheimer's disease accumulated as much as 60 percent more amyloid plaque, the toxic clusters of protein fragments that further the progression of Alzheimer's.

In other studies, Chen and his colleagues linked long-term exposure to high PM2.5 levels to smaller gray and white matter volumes in important areas such as the frontal lobe, which carries out thinking, decision-making and planning. For every 3.5 micrograms of PM2.5 per cubic meter of air, white matter (insulated nerve fibers that connect different brain regions) decreased by 6 cubic centimeters, according to one earlier study. [see post]

For years it has been known that most children with autism spectrum disorder (ASD) have all sorts of gastrointestinal (GI) problems (e.g., constipation, diarrhea, stomach pain, food intolerance), and the more severe the autism, the more severe the GI problems. Recent studies suggested that a major factor in this are abnormal gut bacteria, with the gut microbial community out of whack (dysbiosis). Previous studies looking at the gut microbiome of children with autism have shown lower diversity and lower amounts (abundances) of certain bacteria in children with autism compared to neurologically normal (neurotypical) children.

A recent study of children with autism spectrum disorder found that giving the children a fecal microbiota transplant (FMT) led to significant and lasting improvements in both gastrointestinal (GI) symptoms and autism-related behaviors and symptoms. A fecal microbiota transplant (FMT) is a transplant of fecal matter from a healthy donor to the recipient. A fecal microbial transplant contains approximately a thousand bacterial species that live in a healthy gut, as well as other microbes such as viruses and fungi. FMTs have so far been an amazingly successful treatment for recurrent Clostridium difficile infections, and are now being looked at as promising treatments of chronic inflammatory diseases such as inflammatory bowel disease.

The researchers were surprised to see an 80% improvement in gastrointestinal symptoms, especially abdominal pain, indigestion, diarrhea, and constipation. They also saw about a 25% improvement in autism related behaviors and symptoms which persisted for 8 weeks after treatment stopped, which is when the study ended. One measurement of adaptive behaviors (such as communication, daily living skills, and socialization) found that the average developmental age increased by 1.4 years after treatment. The researchers also found that there was a "rebalancing" of the gut microbes following treatment. They found evidence of "successful partial engraftment of donor microbiota and beneficial changes in the gut environment" - meaning they could see that donor microbes were living in the gut. Also, overall bacterial diversity increased (which is good) and the abundance of certain bacteria increased (including Bifidobacterium, Prevotella, and Desulfovibrio), and these changes persisted until the end of the study.

The researchers caution that this was a small trial, that there could be placebo effects, and so the results should be "cautiously interpreted and viewed as preliminary." But nonetheless, the results are exciting. Really exciting. From Science Daily:

Autism symptoms improve after fecal transplant, small study finds

Children with autism may benefit from fecal transplants -- a method of introducing donated healthy microbes into people with gastrointestinal disease to rebalance the gut, a new study has found. Behavioral symptoms of autism and gastrointestinal distress often go hand-in-hand, and both improved when a small group of children with the disorder underwent fecal transplant and subsequent treatment. In the study of 18 children with autism and moderate to severe gastrointestinal problems, parents and doctors said they saw positive changes that lasted at least eight weeks after the treatment. Children without autism were included for comparison of bacterial and viral gut composition prior to the study.

Previous research has established that children with autism typically have fewer types of some important bacteria in their guts and less bacterial diversity overall -- a difference that held true in this study. That could be because many of them are prescribed a lot of antibiotics in the first three years of life, the research team wrote in the study.

Parents of the children not only reported a decrease in gut woes including diarrhea and stomach pain in the eight weeks following the end of treatment: They also said they saw significant changes for the better when it came to behavioral autism symptoms in their sons and daughters, who ranged from 7 to 16 years old....One of those tools showed the average developmental age increased by 1.4 years after treatment. 

Researchers also were able to document a rebalancing of the gut following treatment. At the end of the study, the bacterial diversity in the children with autism was indistinguishable from their healthy peers. The study also included a unique viral analysis by Ohio State scientists, made possible because of previous work in the world's oceans. Gregory, who is particularly interested in the interplay between viruses and bacteria, used genetic testing to examine the viral diversity in the guts of the treated children. It rebounded quickly, and became more similar to the donor's microbiome. "Those donor viruses seemed to help," she said.

Fecal transplantation is done by processing donor feces and screening it for disease-causing viruses and bacteria before introducing it into another person's gastrointestinal tract. In this study, the researchers used a method called microbiota transfer therapy, which started with the children receiving a two-week course of antibiotics to wipe out much of their existing gut flora. Then, doctors gave them an initial high-dose fecal transplant in liquid form. In the seven to eight weeks that followed, the children drank smoothies blended with a lower-dose powder[Original study.]

Another study finding overdiagnosis (diagnosing something that isn't likely to cause problems) and misdiagnosis (diagnosing something that isn't there) which leads to overtreatment (unnecessary treatment) - this time of asthma in adults. A new study found that as many as 1 in 3 adults diagnosed with asthma may not actually have the disease. Was this due to spontaneous remission or to initial misdiagnosis? After all, many other diseases mimic the symptoms of asthma, and there is no test that can diagnose asthma with 100% accuracy. The study authors thought that of the 33% without asthma - that many of the adults had been originally misdiagnosed, while others had gone into remission. Excerpts from the thought-provoking site Health News Review:

Is it asthma? Many diagnosed with condition receiving unnecessary or incorrect treatment

As many as 1 in 3 adults diagnosed with asthma may not actually have the disease, according to new research published in the Journal of the American Medical Association (JAMA). Canadian researchers evaluated 613 patients with physician-diagnosed asthma and found that 203 participants (33%) most likely did not have the disease. After an additional 12 months of follow-up of this latter group, 181 subjects (30%) continued to exhibit no clinical or laboratory evidence of asthma.

This study, and its accompanying editorials, hit on a theme we’ve often raised with regard to cancer and many other chronic diseases: overdiagnosis leading to overtreatment. But it also raises the specter of misdiagnosis from the get-go, which can lead to erroneously treating a condition that isn’t there. The Canadian results may also confuse many of us who have grown accustomed to news stories warning us that asthma is on the rise. So which is it? More asthma which needs more aggressive treatment or less asthma warning against overtreatment?

“I think asthma is both overdiagnosed and underdiagnosed,” says Dr. Nancy Ott, an allergy and immunology specialist in practice for 28 years. “We don’t have a specific test that is definitive for asthma, and the diagnosis is nuanced. You need to look at the symptoms, the patient’s history, their family history, and the objective tests collectively. And I think we need to be much more strict in what constitutes asthma because the symptoms alone overlap with so many other conditions.”

This is not a message we hear nearly enough in news stories: the diagnosis of asthma, although common, is anything but cut-and-dried. In outpatient clinics – where most asthma is diagnosed – time pressures can lead to incomplete evaluations, which lead to misdiagnoses (which, by the way, includes over-, under-, and no diagnoses), and this can ultimately lead to patients suffering physically, emotionally and financially.

“We think that a large proportion of them had been misdiagnosed in the first place and another proportion that (was) a bit smaller had actually gone into remission, their asthma was no longer active,” said principal investigator Dr. Shawn Aaron, head of respirology at the University of Ottawa. Medical textbooks say about six per cent of people with asthma go into remission over a 10-year period, said Aaron. “But we found at least 20 per cent had gone into remission.” However, “one of the main messages I want to get across is that some people are being misdiagnosed because they’re not being properly investigated to begin with,” he said from Ottawa.

Which brings up an important point: the symptoms of asthma overlap with several other diseases. In the Canadian study, 12 people, or 2 percent of the participants, had serious conditions other than asthma, like heart disease and pulmonary hypertension. Others had problems such as hyperventilation from panic attacks, and gastroesophageal reflux (GERD). These latter two conditions frequently mimic asthma. As does vocal cord dysfunction. Suffice to say that if you were to take each of the classic symptoms of asthma individually, the list of diseases associated with that symptom is well over a dozen.

A few days ago the CDC (Centers for Disease Control and Prevention) released a report about a Nevada woman who died in August 2016 of a bacterial infection that was resistant to all 26 antibiotics available in the US, including the antibiotic of last resort - colistin. Apparently she had picked up the bacterial infection in India, where she been staying for an extended visit and where she had been hospitalized (a fractured leg, which led to a hip infection). Because of the antibiotic resistance, the infection spread, and she went into septic shock and died.

India has soaring rates of antibiotic resistance due to misuse of antibiotics (or antimicrobials). But this is not just a problem with infections acquired in India, but throughout the world. Antibiotic resistance is increasing everywhere (post with video of how superbugs evolve). This is because bacteria are constantly evolving against the antibiotics they're exposed to. We may reach a point where simple cuts or infections could lead to death because no antibiotics will work. The World Health Organization said in a 2014 report that: "The problem is so serious that it threatens the achievements of modern medicine. A post-antibiotic era—in which common infections and minor injuries can kill—far from being an apocalyptic fantasy, is instead a very real possibility for the twenty-first century."

New antibiotic development is not keeping pace with the emergence of new antibiotic resistant bacteria. According to the CDC: "Each year in the United States, at least 2 million people become infected with bacteria that are resistant to antibiotics and at least 23,000 people die each year as a direct result of these infections." On top of that, too few antibiotics are under development, and those antibiotics tend to be developed by small companies, not the big pharmaceutical companies. Farmers are still giving antibiotics (antimicrobials) to farm animals unnecessarily, typically as "growth promoters" or to try to prevent disease. The sale of antibiotics routinely fed to animals has been increasing in recent years, and currently about 80% of all antibiotics used in the US are given to livestock animals (of which nearly 70 percent of those used are considered “medically important” for humans).

Excerpts from The Atlantic: A Woman Was Killed by a Superbug Resistant to All 26 American Antibiotics

Yesterday morning, I published a story about the silent spread of resistance against the antibiotic of last resort, colistin—a major step toward the emergence of a superbug resistant to all antibiotics. While reporting this story, I interviewed Alex Kallen, an epidemiologist at the CDC, and I asked if anyone had found such a superbug yet. “Funny you should ask,” he said.

Funny—by which we all mean scary—because yesterday afternoon, the CDC also released a report about a Nevada woman who died after an infection resistant to 26 antibiotics, which is to say all available antibiotics in the U.S. The woman, who was in her 70s, had been previously hospitalized in India after fracturing her leg, eventually which led to an infection in her hip. There was nothing to treat her infection—not colistin, not other last-line antibiotics. Scientists later tested the bacteria that killed her, and found it was somewhat susceptible to fosfomycin, but that antibiotic is not approved in the U.S. to treat her type of infection.

 More research supporting that the appendix has a purpose - that it has an immune function and is a "reservoir" for beneficial gut bacteria. That is, it is where beneficial bacteria go and hide out when the person has food poisoning or is taking antibiotics (which wipe out bacteria in the gut), and then these bacteria replenish the gut afterwards. (Other supporting research.) This is the opposite of what many have believed for years (and we were taught in school) - which was that it is something that may have had a purpose long ago, but now is a "vestigial organ" and useless in humans. Hah! Once again scientific knowledge is being rewritten.

The researchers examined 533 mammal species for the presence of an appendix, and found it in a number of them, including humans, chimps, and dogs. From Science Daily:

Appendix may have important function, new research suggests

The human appendix, a narrow pouch that projects off the cecum in the digestive system, has a notorious reputation for its tendency to become inflamed (appendicitis), often resulting in surgical removal. Although it is widely viewed as a vestigial organ with little known function, recent research suggests that the appendix may serve an important purpose. In particular, it may serve as a reservoir for beneficial gut bacteria. Several other mammal species also have an appendix, and studying how it evolved and functions in these species may shed light on this mysterious organ in humans.

Heather F. Smith, Ph.D., Associate Professor, Midwestern University Arizona College of Osteopathic Medicine, is currently studying the evolution of the appendix across mammals. Dr. Smith's international research team gathered data on the presence or absence of the appendix and other gastrointestinal and environmental traits for 533 mammal species. 

They discovered that the appendix has evolved independently in several mammal lineages, over 30 separate times, and almost never disappears from a lineage once it has appeared. This suggests that the appendix likely serves an adaptive purpose. Looking at ecological factors, such as diet, climate, how social a species is, and where it lives, they were able to reject several previously proposed hypotheses that have attempted to link the appendix to dietary or environmental factors. Instead, they found that species with an appendix have higher average concentrations of lymphoid (immune) tissue in the cecum. This finding suggests that the appendix may play an important role as a secondary immune organ. Lymphatic tissue can also stimulate growth of some types of beneficial gut bacteria, providing further evidence that the appendix may serve as a "safe house" for helpful gut bacteria.

 Drawing of colon seen from front (the appendix is colored red). From Wikipedia