Skip to content

6

I'm always on the lookout for probiotics (beneficial bacteria) that can somehow  suppress or dominate Staphylococcus aureus  - because that bacteria is implicated in many illnesses, including sinusitis. Some strains of S. aureus are antibiotic resistant and the cause of serious illnesses, such as MRSA  (Methicillin-resistant Staphylococcus aureus). However, S. aureus is also found in the microbiomes (microbial communities) of healthy people - including on the skin, nose, and gut - but it appears to reside there harmlessly in healthy people.

So finding species of bacteria that suppress or controls S. aureus is noteworthy. Researchers (from National Institute of Health and Thailand) found that in both humans and mice strains of Bacillus, especially B. subtilis, which is already added to many probiotic products, suppressed all strains of S. aureus. Interestingly, the researchers found no S. aureus in any of the gut and nasal samples from humans where Bacillus species were present.The researchers think that the Bacillus species eradicate S. aureus - in both the gut and nasal passages. So the researchers tested further using mice - they gave B. subtilis to the mice every 2 days, and it eliminated S. aureus in the guts of the mice.

But why did I title this post '"another probiotic" ? Because from research and personal experiences told to me - Lactobacillus sakei seems to have the same effect against S. aureus (a frequent problem in sinusitis). Studies find some strains of L. sakei (such as Lactobacillus sakei proBio65 - found in Lanto Sinus) to be especially effective against Staphylococcus aureus.

Stay tuned for more research with B. subtilis and other probiotics versus S. aureus. [UPDATE: Since I posted this, I've read some concerns over B.subtilis. Be careful.]  From Science Daily:

Probiotic bacillus eliminates staphylococcus bacteria  ...continue reading "Another Probiotic That Treats Infections?"

Many people take probiotics in the belief that the probiotics will help their gut microbiome (microbial community) recover after taking antibiotics. This is because antibiotics kill both beneficial and pathogenic bacteria, and research shows it may take months for the gut to recover (it depends on the antibiotics taken). However, 2 studies (in both mice and healthy humans) conducted by a group of researchers at the Weizmann Institute of Science in Israel challenge that belief. The researchers used both mice and healthy humans in both well-done studies. They found that taking probiotics after a week of antibiotics actually delayed recovery of the gut microbial community in humans - months longer!

In summary: As expected, taking antibiotics had a big effect on the gut microbiome - the researchers wrote "a dramatic impact"  and "profound microbial depletion" (after taking one week of standard doses of "broad-spectrum antibiotics").  However, they found large differences among the 3 groups in gut microbial recovery after antibiotics. The spontaneous recovery group (they did not take probiotics after antibiotics) showed recovery of gut microbes within 3 weeks. The fecal transplant group (of their own fecal microbes which was collected before they took antibiotics) showed gut microbial recovery within 1 day of the fecal microbial transplant. In contrast, the group taking daily  probiotics for 28 days did not show full recovery (to where they were before antibiotics) by day 28, and the gut microbial community was still out of whack (dysbiosis) even 5 months after stopping probiotics (actually even at 180 days when the study ended).

What species were in the probiotics? Eleven species commonly found in ordinary probiotics: Lactobacillus acidophilus, L. casei, L. casei subsp. paracasei, L. plantarum, L. rhamnosus, Bifidobacterium longum, B. bifidum, B. breve, B. longum sbsp. infantism, Lactococcus lactis, and Streptococcus thermophilus.  These are all considered beneficial species. But keep in mind that the human gut has hundreds of microbial species - not just the few found in probiotics.

Bottom line: Eat well after taking a course of antibiotics so as to feed beneficial microbes, and do not routinely take probiotics thinking it will help the microbes in the gut.

What was also interesting was that in the first study where healthy individuals took the probiotics (and no antibiotics), they found that the probiotic species did not colonize the gut in everyone - only some species and in some people. It's as if there is a "resistance to colonization". This resistance is perhaps what other studies show - that within one week of discontinuing probiotics, they are gone from the gut.

From Science Daily - Human gut study questions probiotic health benefits  ...continue reading "Research Suggests Not Taking Probiotics After Antibiotics"

Is the Mediterranean style diet the future in breast cancer prevention? The following study was done in primates, but it makes sense that the results would also be true for humans: that the type of diet eaten influences the breast microbiome. This means the community of microbes that live in the breast. Yes, it's true - studies show that there is a breast microbiome and it varies between those who have breast cancer and those who don't (healthy breasts).

The study looked at macaque monkeys who were fed either a Mediterranean style diet or a Western style diet for 31 months, and then their breast tissue was examined. They found microbial differences in the breast tissue among the 2 groups, including  greater numbers (abundance) of Lactobacillus species in the primates that had been eating the Mediterranean diet.

Lactobacillus species are generally considered beneficial to humans (which is why they are added to many foods and supplements) and studies suggest they may have anti-tumor effects. Some research has found microbial differences between healthy and malignant (cancerous) human  breast tissue  - including lower Lactobacillus numbers or "abundance" in the malignant breast tissue (compared to those with benign breast lesions). Researchers say it suggests that microbial imbalances (dysbiosis) of breast tissue could be a possible driver of breast cancer .

Studies already show that a person's diet influences the gut microbiome. This study shows diet directly influences microbial communities far away from the gut - in the breasts. Unfortunately it is not stated in the study what Lactobacillus species increased in the breast tissue of primates fed a Mediterranean diet. There are many Lactobacillus species, and they are not equal in their effects (as our experiences with Lactobacillus sakei and sinusitis has shown).

Of course more studies are needed, but in the meantime - eat a diet rich in fruits, vegetables, whole grains, legumes (beans), nuts, and seeds. There are many other documented health benefits from a diet rich in those foods (frequently referred to as a Mediterranean diet). The diet is low in processed foods and high in fiber, and rich in "real foods". From Science Daily:

Diet affects the breast microbiome in mammals

Diet influences the composition of microbial populations in the mammary glands of nonhuman primates, researchers report October 2 in the journal Cell Reports. Specifically, a Mediterranean diet increased the abundance of probiotic bacteria previously shown to inhibit tumor growth in animals ...continue reading "Diet And The Breast Microbiome"

An interesting study about exposure to household cleaning products (regular cleaning products compared to eco-friendly products) and the gut microbiomes of young children was recently published. Canadian researchers found that the use of household cleaning disinfectants in the home was associated with changes in gut microbial communities in infants (more of some bacteria and less of others) - when compared to infants living in homes where eco-friendly cleaners were used. These changes occurred in a dose dependent manner (the more they were used, the bigger the changes).

Also interesting was that the more disinfectants (which are antibacterial) were used in a home, the more Lachnospiraceae was found in the infant's gut microbiota in infancy (age 3 to 4 months), and this was associated with a higher body mass of the child at 1 and 3 years, and increased odds of being overweight or obese at age 3. Use of eco-friendly products was associated with decreased odds of the child being overweight or obese at age 3. What was heavy use of household disinfectants? Daily or weekly. Just keep in mind that these are associations - not a definite cause and effect. But animal studies find similar results. And I wonder - what is frequent use of disinfectants doing to adult gut microbiomes? From Medical Xpress:

Household cleaning products may contribute to kids' overweight by altering their gut microbiota

Commonly used household cleaners could be making children overweight by altering their gut microbiota, suggests a Canadian study published in CMAJ (Canadian Medical Association Journal). The study analyzed the gut flora of 757 infants from the general population at age 3-4 months and weight at ages 1 and 3 years, looking at exposure to disinfectants, detergents and eco-friendly products used in the home. 

...continue reading "What Are Household Disinfectants Doing To Our Gut Microbes?"

Two recent studies caught my eye – both reviews of scientific research that looked at the issue of diet and whether it contributes to the development of Intestinal Bowel Disease (IBD), specifically Crohn’s disease and ulcerative colitis. These are chronic inflammatory disorders of the gastrointestinal tract, and which are rapidly increasing in developed countries (over 1 million individuals in the US). The main question is: Does a person’s diet contribute to the development of IBD?

Both articles (one in the journal Nature Reviews and one in Immunology) said: YES, there is growing evidence that a person’s diet has a role in the development of IBD. Both articles stated that the current view is that some individuals may be genetically susceptible, and their diet (which feeds the microbes in the gut) then makes them more prone to the disease due to the mucosal lining becoming permeable and inflamed. Studies have shown that people with IBD have gut microbial communities that are imbalanced or out of whack (dysbiosis).

What does this mean? A person’s diet has a key role in what microbes live in the gut (human gut microbiome) – what one eats feeds the microbes in the gut, and a person’s general dietary pattern feeds some types of microbes and not others. So what one eats determines what lives in the gut microbial community. Unfortunately a fiber-deficient diet (typical Western diet) is both linked to increased mucosal inflammation (the mucus layer of the intestines) and it makes it leaky. In other words, a fiber deficient diet impairs the mucus layer of the intestines. Animal studies also support this (that the diet regulates mucosal barrier function).

People in developed countries such as the US typically eat a Western style diet. A Western diet is characterized by high amounts of red meat, processed food, high-fat foods, refined grains, sugary desserts, and low intakes of dietary fiber. However, the Western style diet has been linked to increased mucosal inflammation of the intestines, and to a higher incidence of a number of diseases, including ulcerative colitis and Crohn’s disease.

What diet is best? A diet rich in fruits and vegetables, whole grains, nuts, seeds, legumes (beans), and fish. Low in red meat, but moderate amounts of poultry. High in vitamin D, and high in omega-3 fatty acids. High in dietary potassium and zinc. Eat the foods, not supplements. One good example to follow is the Mediterranean diet. Think of it this way: high fiber diets lower inflammation in the gut, low fiber diets increase inflammation.

Both articles had similar diagrams showing that diet has an effect on the microbes in the gut (the microbiome), which results in either 1) a healthy mucosal lining of the intestines, or 2) a disturbed mucosal lining, disturbed permeability, and inflammation. The one article calls it the “mucinous layer” and the other calls it the gut “barrier” in the diagrams, but both are talking about the mucosal lining of the intestines.

The following image contrasts the effects on the intestines of the two types of diet - the intestines on the left have "homeostasis" (balance) from a healthy dietary pattern (lots of fiber, fruits& vegetables, etc) , and the one on the right has inflammation from a Western dietary pattern.  To see it more clearly, go to the original Figure 1. in the article by L. Celiberto et al: Inflammatory bowel disease and immunonutrition: novel therapeutic approaches through modulation of diet and the gut microbiome

The other review:  The role of diet in the aetiopathogenesis of inflammatory bowel disease

The last few days a number of articles appeared in the news about the official US government's opposition to a WHO (World Health Organization)  resolution supporting breastfeeding. Huh? Apparently this was because the US government decided that supporting formula companies was more important than the health of mothers and babies. The US government went so far as to threaten other countries if they supported the resolution.

Medical and scientific studies have clearly established that breast milk is best for a baby for numerous short and long-term health benefits. There are also health benefits to the mother from breastfeeding (e.g. lower incidence of breast and ovarian cancer, and type 2 diabetes). Of course there are many women who can't or won't breastfeed for various reasons (including they can't because of lack of maternity leave or support at their workplace) and their babies will drink infant formula and do well. But .... in general women should be encouraged to breastfeed because of the numerous health benefits, and they shouldn't just hear nonsense (e.g.lies)  from infant formula companies. Below are links to articles explaining what happened in the US vs the WHO and other countries in the breastfeeding controversy, and some reasons why breast milk  is better than formula.

But what these news articles didn't mention is another really important health benefit: mothers transmit hundreds of species of microbes to their babies in breast milk. Yes, hundreds of microbial species which help "seed" the infant's microbiome (microbial communities). [Some research posts: more than 700 species of bacteria in breast milk, and gut microbiota development,]

From Quartz:  All the scientific support for breastfeeding that the US apparently didn’t read  ...continue reading "Why Are Formula Company Profits More Important Than the Health of Babies?"

A recent large study (using health data from the United Kingdom) found that children and adults who took five commonly prescribed types of antibiotics had an increased risk of developing kidney stones, compared to people who didn't take these antibiotics. The five types of antibiotics were sulfas, cephalosporins, fluoroquinolones, nitrofurantoin, and broad-spectrum penicillins. The antibiotics were taken orally (by mouth).

However, not all antibiotics were associated with an increased risk of kidney stones. The study examined 12 types of antibiotics, and found seven types that didn’t appear to influence the risk of kidney stones.The strongest risks for kidney stones were in children and adolescents, and with more recent exposure. The risk of kidney stones decreased over time, but remained elevated several years after antibiotic use.

The researchers pointed out that recent studies have found differences in the gut microbiome (community of microbes) between patients with kidney stones and those without kidney stones. And that studies find that the use of antibiotics disrupts the microbiome. (here and here) Another reason to only take antibiotics when absolutely necessary. From Science Daily:

Oral antibiotics may raise risk of kidney stones

Pediatric researchers have found that children and adults treated with some oral antibiotics have a significantly higher risk of developing kidney stones. This is the first time that these medicines have been linked to this condition. The strongest risks appeared at younger ages and among patients most recently exposed to antibiotics ...continue reading "Antibiotics and Kidney Stones"

Once again, a study finds that consumption of nuts is beneficial to health - this time by impacting the gut microbiome (community of microbes) in a beneficial way. This was a nicely done study -18 healthy adults randomly assigned first to either eating about a handful of walnuts daily (42 g) or zero nuts daily for 3 weeks, and then assigned to the other group for 3 weeks, with a "washout period" of 1 week in-between. Walnut consumption resulted in higher amounts of beneficial gut bacteria (Faecalibacterium, Clostridium, Dialister, and Roseburia) which are butyrate producing (beneficial!), and lowering of proinflammatory secondary bile acids and LDL cholesterol (both beneficial).

As seen in this walnut study from the University of Illinois, adding walnuts to the diet has quick effects on the gut microbiome. Other studies find that diets rich in nuts (which are a source of dietary fiber and unsaturated fatty acids) are associated with a reduced risk of death from cancer and heart disease. Bottom line: eating some nuts daily feeds beneficial bacteria in the gut, and so has beneficial health effects. This walnut study had everyone eating about a handful of walnut halves a day (42 g, which is a little less than 1/2 cup walnut halves).

From Science Daily: Walnuts impact gut microbiome and improve health

Diets rich in nuts, such as walnuts, have been shown to play a role in heart health and in reducing colorectal cancer. According to a new study from the University of Illinois, the way walnuts impact the gut microbiome -- the collection of trillions of microbes or bacteria in the gastrointestinal tract -- may be behind some of those health benefits.  ...continue reading "Walnuts Feed Beneficial Gut Bacteria and Other Health Benefits"

People ask me: what's going on with research in the treatment of sinusitis with probiotics? Well, the answer is that things are moving along slowly - very slowly, but there are good signs.

Earlier this year an interesting article by researcher Anders U. Cervin at the University of Queensland (Australia) was published that specifically talked about "topical probiotics" as a potential treatment for chronic sinusitis. By this he means that probiotics (beneficial bacteria) could be directly applied to the nasal passages in the nose, such as a nasal spray. And he discussed how the prevailing view nowadays, based on scientific evidence, is that in sinusitis there is an "imbalance of the sinus microbiome" - the community of microbes living in the sinuses. Yes!!!

Cervin mentioned all sorts of research showing beneficial effects of using different strains of probiotics for various illnesses, mentioned the Abreu et al study (which is the reason I focused on Lactobacillus sakei as a sinusitis treatment, and which works successfully for many people), but.... nowhere did he mention Lactobacillus sakei by name. What??? There are already excellent L. sakei probiotics out there for chronic sinusitis treatment such as Lanto Sinus.

Cervin discusses how studies are needed to test nasal sprays for the treatment of sinusitis, and made a lot of good points. He looked at studies already done, wondered what bacterial strains might be beneficial, but obviously didn't read the Abreu et al study carefully to see that L. sakei might be a good candidate to test.

And Cervin didn't do an internet search to see what probiotics people are using already as a successful treatment for sinusitis (see Sinusitis Treatment Summary page). He did mention that the only good trial using nasal spray probiotics in humans with sinusitis found no effect - because they tested the wrong Lactobacillus strains - they were honeybee strains, and not ones found in humans.

Eh... So once again I'm heartened by the focus on the microbial community in sinusitis, and heartened that he said there it was time to get out of the laboratory and start testing probiotics as treatments on people. But I'm dismayed that the focus is so narrow that he's missing what is in front of him - what is already out there. He also missed that a "snot transplant" study is now going on in Europe, which is sure to have interesting results.

By the way, some of the questions the article raises are ones which, based on the experiences of myself and others over the past 5 years, we can already answer: living bacteria as a treatment are better than dead bacteria (using dead bacteria doesn't work), nasal treatments work but just swallowing a probiotic pill doesn't, Lactobacillus sakei works as a treatment for many, the L. sakei bacteria reduces inflammation in the nasal passages, the probiotic can be used in place of an antibiotic, and only treat when needed and not continuously (continuously treating can also result in an imbalance in the sinus microbiome). [See post The Best Probiotic For Sinus Infections where these issues are discussed and the best L. sakei products.] ...continue reading "Researcher Sees Potential for Sinusitis Nasal Probiotics"

3

Study after study, and such influential researchers as Dr. Martin Blaser (at New York University) have warned about antibiotics having a negative effect on the human microbiome - that they kill off gut microbes. And all conclude that therefore antibiotics should be used carefully - only when needed. But there are other reasons to be cautious about antibiotics as a recent article warned. Some people who take the class of antibiotics called fluoroquinolones develop a syndrome called fluoroquinolone-associated disability (FQAD) which causes crippling side-effects, including irreversible nerve damage. People who have fallen ill after taking fluoroquinolones call it being "floxed".

The FDA currently has "black box" warnings about fluoroquinolones - that they can cause tendon rupture or a risk of irreversible nerve damage in those taking the antibiotics. Black box warnings are placed inside a black box on drug labels and call attention to serious or life-threatening risks. Millions have taken these drugs, but some (the FDA considers it a rare event) develop the serious side-effects.

Many people (myself included) have taken fluoroquinolones, such as Levaquin, over the years for sinusitis treatment. Some have taken them multiple times. Most have not reported side-effects (including myself), but those who developed serious side-effects (floxed) are desperate for sinusitis treatments that don't involve taking antibiotics. Which is where alternative treatments using probiotics such as Lactobacillus sakei come in (yes, it works for sinusitis!). Excerpts from Nature (the international journal of science):

When Antibiotics Turn Toxic

In 2014, Miriam van Staveren went on holiday to the Canary Islands and caught an infection. Her ear and sinuses throbbed, so she went to see the resort doctor, who prescribed a six-day course of the popular antibiotic levofloxacin. Three weeks later, after she had returned home to Amsterdam, her Achilles tendons started to hurt, then her knees and shoulders. She developed shooting pains in her legs and feet, as well as fatigue and depression. “I got sicker and sicker,” she says. “I was in pain all day.” Previously an active tennis player and hiker, the 61-year-old physician could barely walk, and had to climb the stairs on all fours. Since then, she has seen a variety of medical specialists. Some dismissed her symptoms as psychosomatic. Others suggested diagnoses of fibromyalgia or chronic fatigue syndrome. Van Staveren is in no doubt, however. She’s convinced that the antibiotic poisoned her.

She’s not alone. Levofloxacin is one of a class of drugs called fluoroquinolones, some of the world’s most commonly prescribed antibiotics. In the United States in 2015, doctors doled out 32 million prescriptions for the drugs, making them the country’s fourth-most popular class of antibiotic. But for a small percentage of people, fluoroquinolones have developed a bad reputation. On websites and Facebook groups with names such as Floxie Hope and My Quin Story,thousands of people who have fallen ill after fluoroquinolone treatment gather to share experiences. Many of them describe a devastating and progressive condition, encompassing symptoms ranging from psychiatric and sensory disturbances to problems with muscles, tendons and nerves that continue after people have stopped taking the drugs. They call it being ‘floxed’.  ...continue reading "Some Antibiotics Can Have Crippling Side Effects"