Skip to content

8

Image result for antibiotics Yes, of course this makes sense!.... Many rounds of antibiotics have an effect not just in one area of the body, but kill off both good and bad bacteria in many areas of the human body. The researchers in this study found that taking antibiotics for a reason OTHER THAN SINUSITIS was associated with an increased risk of developing chronic sinusitis (as compared to those people not receiving antibiotics).

Use of antibiotics more than doubles the odds of developing chronic sinusitis without nasal polyps. And this effect lasted for at least 2 years.

Other research has already associated antibiotic use with "decreased microbial diversity" in our microbiome  and with "opportunistic infections" such as Candida albicans and Clostridium difficile. Diseases such as Crohn's disease and diabetes are also linked to antibiotic use. In other words, when there is a disturbance in the microbiome (e.g.from antibiotics) and the community of microbes becomes "out of whack", then pathogenic bacteria are "enriched" (increase) and can dominate.

This study lumped together chronic sinusitis without nasal polyps (CRSsNP) and chronic sinusitis with nasal polyps (CRSwNP), but when the 2 groups are separated out, then antibiotic use was mainly associated with chronic sinusitis without polyps. It appeared that antibiotic exposure did not significantly impact the odds of developing chronic sinusitis with nasal polyps.

The researchers write: "This effect was primarily driven by the CRSsNP subgroup, which also supports the evolving concept of CRSwNP (chronic sinusitis with nasal polyps) as a disease of primary inflammation rather than infection. Despite this, we elected to analyze the CRS (chronic rhinosinusitis) group as a whole because the precise relationship between CRS with and without nasal polyps remains incompletely understood, and it is possible that a proportion of the CRSsNP patients could go on to develop nasal polyps over time."

Which makes me wonder, will giving beneficial bacteria (such as Lactobacillus sakei) to those who have chronic sinusitis with nasal polyps show the same improvement in symptoms as those people without nasal polyps? Or do 2 treatments have to occur at once: something to lower the inflammation (which may be the reason for the nasal polyps) and also beneficial microbes to treat the bacterial imbalance of sinusitis? We just don't know yet. Note that CRS = chronic rhinosinusitis (commonly called chronic sinusitis). Research by A.Z. Maxfield et al from The Laryngoscope :

General antibiotic exposure is associated with increased risk of developing chronic rhinosinusitis 

Antibiotic use and chronic rhinosinusitis (CRS) have been independently associated with microbiome diversity depletion and opportunistic infections. This study was undertaken to investigate whether antibiotic use may be an unrecognized risk factor for developing CRS. Case-control study of 1,162 patients referred to a tertiary sinus center for a range of sinonasal disorders.

Patients diagnosed with CRS according to established consensus criteria (n = 410) were assigned to the case group (273 without nasal polyps [CRSsNP], 137 with nasal polyps [CRSwNP]). Patients with all other diagnoses (n = 752) were assigned to the control group. Chronic rhinosinusitis disease severity was determined using a validated quality of life (QOL) instrument. The class, diagnosis, and timing of previous nonsinusitis-related antibiotic exposures were recorded.

Antibiotic use significantly increased the odds of developing CRSsNP  as compared to nonusers. Antibiotic exposure was significantly associated with worse CRS QOL {Quality of Life} scores over at least the subsequent 2 years. These findings were confirmed by the administrative data review. Use of antibiotics more than doubles the odds of developing CRSsNP and is associated with a worse QOL for at least 2 years following exposure. These findings expose an unrecognized and concerning consequence of general antibiotic use.

Antibiotic use and chronic rhinosinusitis (CRS) have been independently associated with microbiome diversity depletion and opportunistic infections. This study was undertaken to investigate whether antibiotic use may be an unrecognized risk factor for developing CRS.....Antibiotics have also been associated with significant adverse side effects. It has long been recognized that antibiotic use may lead to increased susceptibility to secondary mucosal infections from pathogens including Candida albicans and Clostridium difficile.  Recent studies on the concept of mucosal microbial dysbiosis have suggested that these infections arise as a result of antibiotic induced depletion of the diverse commensal microbial assemblage, which enables the proliferation of pathogenic species.

Chronic rhinosinusitis (CRS) is defined....as having greater than 12 weeks of sinonasal symptoms, along with at least one objective measure of infection or inflammation by nasal endoscopy or radiographic imaging....However the distinct lack of long-term disease resolution following antimicrobial therapy and in some cases surgery, suggests that additional factors are likely involved. Through these studies, CRS with nasal polyps (CRSwNP) has been recognized as an inflammatory subtype characterized by eosinophilic inflammation and a T-helper cell type 2 immunologic profile. Although CRSwNP lacks the features of a classic infectious process, the precise role of bacteria and their byproducts in the promotion of nasal polyp-related inflammation remains unclear.

Recent findings from culture independent investigations of the sinonasal microbiome have offered new insights into the pathogenesis of CRS. These studies have suggested that a decreased microbial diversity exists in CRS patients as compared to healthy controls with a selective enrichment of pathogenic species. Furthermore, some studies have shown that antibiotic exposure may be a risk factor associated with this loss of biodiversity,  echoing the findings seen in postantibiotic C. difficile infections.  Although systemic antibiotics have long been a mainstay of therapy for CRS, these findings lead inexorably to the paradoxical hypothesis that antibiotic exposure may, in fact, promote its onset.

We performed a....case control study of 1,574 patients referred to the Massachusetts Eye and Ear Infirmary Sinus Center in 2014 with symptoms of presumed sinonasal disease.... Inclusion criteria included all antibotic naive patients, and all antibiotic exposed patients for whom antibiotic use was for nonsinonasal-related infections. Among the antibiotic exposed group, only patients who used antibiotics for nonsinonasal-related infections prior to the onset of symptoms of CRS (within the case group) were enrolled in the study.....The case group was further substratified into CRS patients without nasal polyps (CRSsNP, n =273) and with nasal polyps (CRSwNP, n =137) based on the presence of nasal polyps on sinonasal endoscopy.

Among the case patients, 56.34% reported a previous nonsinus-related antibiotic exposure as compared to 42.02% of control patients. Antibiotic use significantly increased the odds of developing both CRSsNP and any form of CRS as compared to nonusers. This odds ratio was similar even when excluding patients who were treated for upper aerodigestive infections. In contrast, antibiotic exposure did not significantly impact the odds of developing CRSwNP. The percent of patients with any form of CRS and CRSsNP only, which was attributable to a previous exposure to antibiotics, was 24.69%  and 33.70%, respectively. In both the case and control groups, the most common class of antibiotic patients received was a penicillin (52.63% vs. 45.77%), and the most common reported reason for antibiotic prescription was the diagnosis of pharyngitis(18.06% vs. 16.67%).

Among the CRS patients (i.e., case group), the use of antibiotics was significantly associated with worse QOL scores as compared to antibiotic-naıve CRS patients. The effect on QOL was enduring because patients who used antibiotics at least 2 years prior to the development of CRS (36.81%) had similar disease severity scores as compared to those with more recent exposures. There was no significant difference in QOL score among patients using different antibiotic classes and among patients with different underlying reasons for antibiotic use.

The human microbiome project has provided new insights into the distribution and abundance of bacterial species in both health and disease. Opportunistic pathogens, as defined by the pathosystems resource integration center, were found nearly ubiquitously in the nares of healthy subjects, albeit at relatively low abundance. Additional studies of the normal nasal cavity found an inverse correlation between the prevalence of Firmicutes such as S. aureus and benign commensal organisms, suggesting a homestatic antagonism between potential pathogens and the remainder of the healthy microbial assemblage. Extrapolation of this concept would therefore predict that events resulting in a perturbation or loss of the commensal microbial community would enable proliferation of pathogenic species, resulting in the disease phenotype. This prediction has borne out in several studies of the sinonasal microbiome in patients with CRS. Feazel et al. found a decreased number of bacterial types and an overabundance of S. aureus among CRS patients as compared to controls. Antibiotic exposure was one of the most significant clinical factors driving this effect. Similar findings were published by Choi et al. and Abreu et al.... Although literature regarding the sinonasal microbiome in health and disease remains nascent, it has provided some limited clues that antibiotics may lead to a reduction of sinonasal microbial biodiversity, which in turn may be a significant feature of CRS.

Our results demonstrate that exposure to antibiotics is a significant risk factor for the development of CRS and accounts for approximately 25% of the disease burden in our study population. These findings harmonize with the predictions of the nascent literature on the sinonasal microbiome. This effect was primarily driven by the CRSsNP subgroup, which also supports the evolving concept of CRSwNP as a disease of primary inflammation rather than infection. Despite this, we elected to analyze the CRS group as a whole because the precise relationship between CRS with and without nasal polyps remains incompletely understood, and it is possible that a proportion of the CRSsNP patients could go on to develop nasal polyps over time.....

One unexpected outcome of our study was that a large percentage of exposures preceeded the onset of the diagnosis of sinusitis by more than 2 years. This indicates that, regardless of the mechanism, the sequelae of antibiotic use may endure much longer then previously thought....The impact of antibiotics on promoting bacterial resistance, and the development of mucosal infections from pathogens such as C. difficile and C. albicans, has been well established. This study demonstrates that antibiotics also significantly increase the risk of developing CRS, an effect that is driven primarily by CRS patients who do not have nasal polyps. Furthermore, premorbid antibiotic use could account for approximately 25% of our patients who developed CRS, and exposure conferred a worse disease-specific quality of life.

 Some people have nasal bacteria - Staphylococcus lugdunensis, that kills other disease causing bacteria such as Staphylococcus aureus (including strains of MRSA) and Enterococcus. This is because S. lugdunensis produces a molecule (lugdunin) that acts as an antibiotic. It is thought that 10% of people naturally carry S. lugdunensis in their nasal passages. Will this lead to a new class of antibiotics or to probiotics of the future? Could it help in treating sinusitis? Stay tuned... From Science News:

The nose knows how to fight staph

The human nose harbors not only a deadly enemy — Staphylococcus aureus — but also its natural foe. Scientists have now isolated a compound from that foe that might combat MRSA, the methicillin-resistant strain of S. aureus....Investigating the intense interspecies competition in the nose — where microbes fight for space and access to scant sugars and amino acids — might offer a fertile alternative to searching for new drug candidates in soil microbes.

Despite being a relatively nutrient-poor environment, the human nose is home to more than 50 species of bacteria. One of these is S. aureus, a dominant cause of hospital-acquired infections such as MRSA, as well as infections of the blood and heart. But there’s a huge variability in the nasal microbe scene between individuals: while S. aureus is present in the nasal passages of roughly 30 percent of people, the other 70 percent don’t have any sign of it.

Trying to explain this difference led Peschel and colleagues to study “the ecology of the nose.” They suspected that other nasal inhabitants, well-tuned to compete in that harsh niche, might be blocking S. aureus from colonizing the nose in those who don’t carry it. From nasal secretion samples, the team isolated 90 strains of different Staphylococcus species. Of these, one bacterium, S. lugdunensis, killed S. aureus when the two were grown together in a dish. Introducing a variety of mutations into S. lugdunensis produced a strain that didn’t kill. The missing gene, the team showed, normally produced an antibiotic, which the researchers named lugdunin; it represents the first example of a new class of antibiotic.

Lugdunin was able to fend off MRSA as well as a strain of Enterococcus resistant to the antibiotic vancomycin. Neither bacteria developed resistance. The team also pitted S. lugdunensis against S. aureus in test tube and mouse studies, with S. lugdunensis besting S. aureus. Only 5.9 percent of 187 hospital patients had S. aureus in their noses if they also carried S. lugdunensis, the team found, while S. aureus was present in 34.7 percent of those without S. lugdunensis. Peschel and colleagues also reported the results July 28 in Nature.

Lugdunin cleared up a staph skin infection in mice, but it’s unclear how the compound works. Researchers could not rule out that it damages the cell membrane, which could limit its use in humans to a topical antibiotic. Peschel and coauthor Bernhard Krismer also suggest that the bacterium itself might be a good probiotic, applied nasally, to fend off staph infections in vulnerable hospital patients.  (The original study and accompanying Commentary)

 A compound secreted by the nose-dwelling bacterium Staphylococcus lugdunensis may fight antibiotic-resistant strains of bacteria such as MRSA (pink). CREDIT: NIAID, NIH/WIKIMEDIA COMMONS

A thought-provoking article by Heiman and Greenway was just published in the journal Molecular Metabolism making the case that changes in farming practices over the last 50 years have resulted in decreased agricultural diversity which, in turn, has resulted in decreased dietary diversity, and that the reduction in dietary diversity has changed and decreased the richness of the human gut microbiota (microbes living in the gut). And meanwhile, during the past 50 years, the rates of obesity, type 2 diabetes, and inflammatory bowel diseases sharply increased - and in each of these conditions there is a reduction of the gut microbial diversity. Similar views have also been stated by others in the field of microbiology.

The thinking is that the more diverse the diet, the more diverse the gut microbiome (and healthier), and the more it can adapt to disturbances. Heiman and Greenway state: "Unfortunately, dietary diversity has been lost during the past 50 years because of economic pressures for greater food production to support a growing world population.... Of the 250,000 to 300,000 known edible plant species, humans use only 150 to 200...Today, 75 percent of the world's food is generated from only 12 plants and five animal species."

Also, agricultural practices of using antibiotics as growth promoters for poultry, swine, and cattle further harm the human gut microbiome when the meat is ingested by humans, and pesticide residues on crops ingested by humans may have gut microbiome effects. Even emulsifiers, used in processed foods, reduce microbial richness. Every time a person goes on a certain diet (vegan, Paleo, etc) or makes dietary choices in which some foods are eliminated, it makes it easier for some microbial species, and gives them a competitive advantage over other gut microbes. From Science Daily:

Reduction in dietary diversity impacts richness of human gut microbiota

Changes in farming practices over the last 50 years have resulted in decreased agro-diversity which, in turn, has resulted in decreased dietary diversity. The significant impact of this change in dietary richness on human health is an emerging topic for discussion

Heiman and Greenway describe how the reduction in dietary diversity has changed the richness of human gut microbiota, the community of microorganisms living in the gut. The researchers point out that healthy individuals have diverse gut microbiota and many of the common pathologies of the 21st century, including type 2 diabetes, obesity and inflammatory bowel disease, are associated with reduced microbiotic richness.

Gut microbiota function as an endocrine organ, metabolizing specific nutrients from the diet and producing specific substances that act as metabolic signals in the host. It follows then that highly specialized diets will change the landscape of the gut microbiome over time. In fact, it takes only a few days of changing diet to alter the microbiotic makeup of the human gut. And if the dietary change involves elimination of one or more macronutrients (think Atkins or Paleo or vegan), humans are essentially selecting for some microbiotic species over others.

The importance of microbiota diversity cannot be overstated. They produce an abundance of important molecules for the host and with increased variation comes increased adaptability and an increased range of physiological responses. "The greater the repertoire of signals, the more likely is the ability to maintain homeostasis when dietary intake is perturbed," explain Heiman and Greenway. "Furthermore, because each particular macronutrient has the potential to be metabolized by microbiota into unique metabolic signals, the greater the variety in signals, the greater the variety of responses possible."

 Lyme disease is caused by the bacterium Borrelia burgdorferi and is typically treated with antibiotics. This study may go a long way in explaining why some people do not seem to respond to Lyme disease treatment, and why they continue to feel sick even after prolonged antibiotic therapy. The researchers discussed how, in addition to the familiar spirochete form, B. burgdorferi can transform from spirochetes into round body forms in the presence of various unfavorable environmental conditions, including the presence of antimicrobial agents (antibiotics). And that the different forms respond to different antibiotic treatments!

But now they found that this bacterium has an additional form, which they refer to as biofilm, and which may be resistant to even very aggressive antibiotic (antimicrobial) treatments. They say this is the first study that demonstrates the presence of Borrelia biofilm in infected human skin tissues. From Medical Xpress:

Lyme disease 'Biofilm' eludes antibiotics: report

In many cases, Lyme disease returns after a patient has completed antibiotic treatment, and this finding may help explain why that occurs, the researchers said. University of New Haven researchers determined that Lyme disease-causing Borrelia burgdorferi bacteria produces a biofilm that makes it up to 1,000 times more resistant to antibiotics than other bacteria.

The discovery may lead to new ways to treat Lyme disease, said study author Eva Sapi, head of biology and environmental sciences at the university. "These findings could change the way we think about Lyme disease, especially in patients where it seems to be a persistent disease, despite long-term antibiotic treatment," she said in a news release from the Connecticut-based university.

"This recent finding could help to better understand how Borrelia can survive treatment and ... will provide novel therapeutic targets for chronic Lyme disease, with the hope of eradicating Borrelia in these patients," Sapi added. (original study)

 Borrelia burgdorferi  Credit: CDC

This study is noteworthy and relevant to humans (it was done on mice) because it may explain why so many people taking antibiotics get frequent viruses or seem more susceptible to infections. Once bacteria (both good and bad) are killed by antibiotics, then the community becomes unbalanced (dysbiosis), so that viruses may gain a foothold and a viral infection develops. In a healthy microbial community all sorts of microbes can be found, even ones we typically consider pathogenic, but the whole community keeps them in balance. One can say that "depletion of commensal microbiota also affects antiviral immunity".

The study researchers said that the study findings were relevant to humans: that oral antibiotics could result in increased susceptibility to sexually transmitted infections, as well as other infectious viruses. Note: commensal microbes or commensalism is a the living together of two organisms (different species) in a relationship that is beneficial to one and has no effect on the other. Dysbiosis is microbial imbalance, the microbial community being "out of whack". From Science Daily:

Antibiotics may increase susceptibility to sexually transmitted infections

Commensal microbiota, populations of bacteria that inhabit the tissues of larger organisms, often have complex relationships with their hosts. Researchers have been aware for some time that commensal microbiota play a role in antiviral immunity by producing immune inductive signals that trigger inflammasome responses, among other things.

However, the role of dysbiosis on antiviral immunity hasn't been studied. Dysbiosis describes the loss of bacterial diversity within a microbiome, and the direct role that commensal microbiota play in antiviral immunity suggests that such loss would facilitate viral infections. Recently, a collaborative of Korean and Japanese scientists conducted a study into the effects of antibiotic-induced dysbiosis on antiviral immunity, and have published their results in the Proceedings of the National Academy of Sciences.

The researchers investigated the mechanisms of commensal microbial immunity on the genital mucosa by treating mice with antibiotics for four weeks and then exposing them to HSV-2. A control group received placebo. They report that the antibiotics caused dysbiosis within the vaginal microbiota, and resulted in a dramatic increase in innate immune response—specifically, they noted increases in an alarmin called IL-33, which blocked effector T cells from migrating into the vaginal tissues and secreting antiviral cytokines.

Antibiotic-treated mice succumbed to HSV-2 infection dramatically faster than control mice. They exhibited more severe pathology and all mice treated with antibiotics prior to viral exposure died within 11 days of infection. "Taking these data together, we find that depletion of commensal bacteria results in a severe defect in antiviral protection following mucosal HSV-2 infection," the researchers write.

By analyzing stool and vaginal washes from both groups of mice, they determined that antibiotic treatment induced an imbalance in the microbial composition of the vaginal mucosa. Further, they were able to determine that no single species of bacteria was responsible for the antiviral immunity effects of the commensal microbiome; rather, it was the imbalance of the microbiotic population that accounted for the effects.

 

The human mouth hosts a variety of microbes, some taking up residence on the mouth lining (blue) within days after birth. Credit: Martin Oeggerli (National Geographic)

4

It's now 3 years being free of chronic sinusitis and off all antibiotics! Three amazing years since I started using easy do-it-yourself sinusitis treatments containing the probiotic (beneficial bacteria) Lactobacillus sakei. My sinuses feel great! And yes, it still feels miraculous.

After reading the original ground-breaking research on sinusitis done by Abreu et al (2012), it led to finding and trying L. sakei as a sinusitis treatment. Of course, there is an entire community of microbes that live in healthy sinuses (the sinus microbiome), but L. sakei seems to be a key one for sinus health.

I just updated the post The One Probiotic That Treats Sinusitis (originally posted January 2015) using my family's experiences (lots of self-experimentation!) and all the information that people have sent me. The post has a list of brands and products with L. sakei, as well as information about some other promising bacteria. Thank you so much! [For latest see: The Best Probiotic For Sinus Infections]

Thank you all who have written to me  - whether publicly or privately. Please keep writing and tell me what has worked or hasn't worked for you as a sinusitis treatment. If you find another bacteria or microbe or product that works for you - please let me know. It all adds to the sinusitis treatment knowledge base. I will keep posting updates. 

(NOTE: I wrote our background story - Sinusitis Treatment Story back in December 2013, and there is also a  Sinusitis Treatment Summary page with the various treatment methods. One can also click on SINUSITIS under CATEGORIES to see more posts, such as "Probiotics and Sinusitis" - a discussion by one of the original sinusitis researchers about what she thinks is going on in sinus microbiomes and what is needed.)  

Drawing of colon seen from front (appendix is colored red). Credit: Wikipedia

This is the second time I've seen research finding that antibiotics  alone could be used (instead of surgery) for the treatment of uncomplicated appendicitis (June 17, 2015 post), but this time in children. Appendicitis is inflammation of the appendix.  At the one year follow-up the researchers found that 75.7% of patients with uncomplicated appendicitis had been successfully treated with antibiotics alone and had not had any recurrences of appendicitis.

This is a major finding because for years the gold standard for appendicitis treatment has been an appendectomy. The times are a changing.

From Science Daily: Antibiotics alone can be a safe, effective treatment for children with appendicitis

Using antibiotics alone to treat children with uncomplicated acute appendicitis is a reasonable alternative to surgery when chosen by the family. A study led by researchers at Nationwide Children's Hospital found that three out of four children with uncomplicated appendicitis have been successfully treated with antibiotics alone at one year follow-up. Compared to urgent appendectomy, non-operative management was associated with less recovery time, lower health costs and no difference in the rate of complications at one year.

"Surgery has long been the 'gold standard' of care for treating appendicitis because by removing the appendix we eliminate the chance that the appendicitis will ever come back," said Dr. Deans. "However, early in our careers we noticed that patients with appendicitis who were placed on antibiotics overnight until their surgery the following morning felt better the next day. So, Pete and I asked ourselves: do they really need to have surgery?"

In the first study conducted and published in the United States examining non-operative management for appendicitis, they enrolled 102 patients age 7 to 17 who were diagnosed with uncomplicated acute appendicitis at Nationwide Children's between October 2012 and October 2013. Participants had early/mild appendicitis, meaning that they experienced abdominal pain for no more than 48 hours; had a white blood cell count below 18,000; underwent an ultrasound or CT scan to rule out rupture and to verify that their appendix was 1.1 centimeter thick or smaller; and had no evidence of an abscess or fecalith, which is hard stone-like piece of stool.

Thirty-seven families chose antibiotics alone and 65 opted for surgery. Those patients in the non-operative group were admitted to the hospital and received IV antibiotics for at least 24 hours, followed by oral antibiotics after discharge for a total of 10 days. Among those patients, 95% showed improvement within 24 hours and were discharged without undergoing surgery. Rates of appendicitis-related medical care within 30 days were similar between the groups with two patients in the non-operative group readmitted within 30 days for an appendectomy. At one year after discharge, three out of four patients in the non-operative group did not have appendicitis again and have not undergone surgery.

Appendicitis, caused by a bacterial infection in the appendix, is the most common reason for emergency abdominal surgery in children, sending more than 70,000 young people to the operating room each year. Although many of these cases are severe and require surgery, there are a good number that would be candidates for treatment with antibiotics alone, Dr. Minneci said.

According to the study results, patients who were transferred to Nationwide Children's from other institutions expressed concerns about the distance and time necessary to come back if the appendicitis recurred. These families opted for surgery more often. Patients whose families spoke primary languages other than English were more likely to choose antibiotics as a course of treatment due to cultural values to avoid surgery if at all possible.

The American Academy of Pediatrics released a new report that the overuse of antibiotics in animals poses a real health risk to children. Giving routine antibiotics to animals leads to antibiotic resistant bacteria  - which means that antibiotics may not work when given to people. Most of the antibiotics sold in the U.S. each year - 80 percent- are used in animals that people than eat. The great majority of antibiotics given to animals are the same ones given to humans.The main way to ensure that the meat that you are purchasing is antibiotic-free is to buy meat labeled organic. And to buy organic dairy products (milk, butter, cheese, cream). Note that the reason routine use of antibiotics in animals has not been stopped so far in the USA is due to agriculture industry lobbying. From Medical Xpress:

Pediatricians' group urges cuts in antibiotic use in livestock

Overuse of antibiotics in farm animals poses a real health risk to children, the American Academy of Pediatrics warns in a new report.This common practice is already contributing to bacterial resistance to medicines and affecting doctors' ability to treat life-threatening infections in kids, according to the paper published online Nov. 16 in the journal Pediatrics.

"The connection between production uses of antibiotics in the agricultural sector to antibiotic resistance is alarming," said Victoria Richards, an associate professor of medical sciences at the Quinnipiac University School of Medicine in Hamden, Conn. She believes the danger is "not only for infants and children but other vulnerable populations, such as the pregnant and the older individuals."

As the academy explained in its warning, antibiotics are often added to the feed of healthy livestock to boost growth, increase feed efficiency or prevent disease. However, the practice can also make antibiotics ineffective when they are needed to treat infections in people. Some examples of emerging antibiotic germs include methicillin-resistant staphylococcus aureus (MRSA), C.difficile, and highly resistant strains of the tuberculosis bacterium. Each year, more than 2 million Americans develop antibiotic-resistant infections and more than 23,000 die from these infections, the academy said. And in 2013, the highest incidence of such infections was among children younger than 5, federal government statistics show. 

"Children can be exposed to multiple-drug resistant bacteria, which are extremely difficult to treat if they cause an infection, through contact with animals given antibiotics and through consuming the meat of those animals," report author Dr. Jerome Paulson, immediate past chair of the academy's executive committee of the Council on Environmental Health, said in an academy news release."Like humans, farm animals should receive appropriate antibiotics for bacterial infections," he said. "However, the indiscriminate use of antibiotics without a prescription or the input of a veterinarian puts the health of children at risk."

Spaeth noted that the U.S. Centers for Disease Control and Prevention, as well as the World Health Organization, have both called for a curbing of antibiotic use in animals. But the authors of the new report expressed concern over resistance from the agriculture and farming industry to such measures.

New research found that one course of antibiotics (ciprofloxacin, clindamycin, amoxicillin or minocycline) had varying effects on the gut and saliva microbes, with ciprofloxacin having a negative and disruptive effect on gut microbiome diversity up to 12 months. While the microscopic communities living in the mouth rebound quickly, just one course of antibiotics can disrupt the gut microbiome for months - with amoxicillin the least and ciprofloxacin the most (up to a year).The researchers stressed that for these reasons "antibiotics should only be used when really, really necessary. Even a single antibiotic treatment in healthy individuals contributes to the risk of resistance development and leads to long-lasting detrimental shifts in the gut microbiome."

The scary part is that Americans typically take many courses of antibiotics throughout life. And people with conditions such as chronic sinusitis typically take many more than average. From Medical Xpress:

One course of antibiotics can affect diversity of microorganisms in the gut

A single course of antibiotics has enough strength to disrupt the normal makeup of microorganisms in the gut for as long as a year, potentially leading to antibiotic resistance, European researchers reported this week in mBio, an online open-access journal of the American Society for Microbiology. In a study of 66 healthy adults prescribed different antibiotics, the drugs were found to enrich genes associated with antibiotic resistance and to severely affect microbial diversity in the gut for months after exposure. By contrast, microorganisms in the saliva showed signs of recovery in as little as few weeks.

The microorganisms in study participants' feces were severely affected by most antibiotics for months, said lead study author Egija Zaura, PhD, an associate professor in oral microbial ecology at the Academic Centre for Dentistry in Amsterdam, the Netherlands. In particular, researchers saw a decline in the abundance of health-associated species that produce butyrate, a substance that inhibits inflammation, cancer formation and stress in the gut.

"My message would be that antibiotics should only be used when really, really necessary," Zaura said. "Even a single antibiotic treatment in healthy individuals contributes to the risk of resistance development and leads to long-lasting detrimental shifts in the gut microbiome."

It's not clear why the oral cavity returns to normal sooner than the gut, Zaura said, but it could be because the gut is exposed to a longer period of antibiotics. Another possibility, she said, is that the oral cavity is intrinsically more resilient toward stress because it is exposed to different stressors every day.

The investigators enrolled healthy adult volunteers from the United Kingdom and Sweden. Participants were randomly assigned to receive a full course of one of four antibiotics (ciprofloxacin, clindamycin, amoxicillin or minocycline) or a placebo. The researchers, who did not know which medication participants took, collected fecal and saliva samples from the participants at the start of the study; immediately after taking the study drugs; and one, two, four and 12 months after finishing the medications....

Researchers found that participants from the United Kingdom started the study with more antibiotic resistance than did the participants from Sweden, which could result from cultural differences. There has been a significant decline in antibiotic use in Sweden over the last two decades, Zaura said.

In addition, fecal microbiome diversity was significantly reduced for up to four months in participants taking clindamycin and up to 12 months in those taking ciprofloxacin, though those drugs only altered the oral cavity microbiome up to one week after drug exposure. Exposure to amoxicillin had no significant effect on microbiome diversity in either the gut or oral cavity but was associated with the greatest number of antibiotic-resistant genes.

Gut bacteria. Credit: Med. Mic. Sciences Cardiff Univ, Wellcome Images

6

[UPDATE:  I added an Oct. 2018 update to the post The One Probiotic That Treats Sinusitis, which was originally posted in January 2015.]  Updates incorporate the latest information about treatments and products with Lactobacillus sakei  (kimchi brands, the probiotic Lacto Sinus , the sausage starter culture Bactoferm F-RM-52, etc.). According to research by Abreu et al (2012)Lactobacillus sakei is a bacteria or probiotic (beneficial bacteria) that chronic sinusitis sufferers lack and which treats chronic sinusitis. Chronic sinusitis sufferers also don't have the bacteria diversity in the sinuses that healthy people have.

Many thanks to those who have written to me about their experiences with L. sakei products and sinusitis treatment.  Please keep the updates, results, and progress reports coming. If you have had success with other kimchi brands, please let me know so that I can add it to the list. And I also want to hear if other probiotics work or don't work, or if you have found other sources of Lactobacillus sakei or new ways to use L. sakei. It all adds to the knowledge base which I will continue to update.  You can Comment after posts, the Sinus Treatment Summary page, on the CONTACT page, or write me privately (see CONTACT page).

It is now over 2 1/2 years since my family (4 people) successfully treated ourselves with Lactobacillu sakei for chronic sinusitis and acute sinusitis. We feel great! With each passing year we can tell that our sinus microbial community is bettter, and levels of inflammation are down. As a consequence, we are getting fewer colds or viruses than ever. And best of all - no antibiotics taken in over 2 1/2 years! Yes, Lactobacillus sakei absolutely works as a treatment for sinusitis.

[Read the updated post: The One Probiotic That Treats Sinusitis - with Oct. 2018 update]