microbes

Image result for moldy wallpaper How many people know this? That wallpaper could have fungi (mold) living on it, and this fungi can release toxins (mycotoxins) that can pollute the air and sicken people when people inhale the toxins. The releasing of toxins from the fungi (mold) into the air is called aerosolization - and when this indoor air pollution causes people  living or working in the building to become sick, it is called sick building syndrome. This study looked at 3 common indoor fungal species: Penicillium brevicompactum, Aspergillus versicolor, and Stachybotrys chartarum, and the mycotoxins they produce after growing on wallpaper.

Why does fungi grow on some wallpaper?  The researchers write that: "Many fungi can develop on building material in indoor environments if moisture is high enough". So either high humidity in the home (especially when the weather is hot) or water damage can result in mold growth. It is estimated that in Northern Europe and North America about 20 to 40 % of buildings have visible fungal growth on surfaces. How do the mycotoxins get into the air and move around inside the home? Ordinary living, with people moving around rooms, slamming doors, air drafts from opening windows, and ceiling fans all cause "air velocities" that move around the toxins. Please note that we normally breathe in fungi and bacteria, but inhaling an overload of mycotoxins from moldy wallpaper can sicken a person. From News-Medical:

Fungal toxins from wallpaper source of illness says new research

According to a new study, there are several toxins from fungi that could be released into the air indoors and the source could be fungi living in the wall papers. These may lead to serious health problems say researchers. These ordinary fungi that live with the household wallpaper are basically of three types found the study researchers. They can grow and eventually spread to the air. This leads to serious health consequences. These effects of transmission of the airborne fungi and their toxins on human health have not been studied or considered with importance till date say researchers.

The toxins released from the fungi are called mycotoxins. They can pollute the indoor air and lead to indoor air pollution – a condition called sick building syndrome. Sick building syndrome is a condition where the residents start to feel ill according to the time they have spent in a building.... Study co-author Jean-Denis Bailly, a professor of food hygiene at the National Veterinary School of Toulouse in France in a statement explained that these mycotoxins are released from moldy material of growth of the fungi. They are eventually inhaled by the inhabitants of the home. While investigating the quality of air indoors especially at homes that have higher fungal contamination, the indoor air quality also needs to be tested for fungal toxins, he explained.

According to researchers, there has been extensive study of fungal contamination of food. However there has been little work in terms of fungal toxins in air. For this study they looked at three fungi that commonly also contaminated foods - Penicillium brevicompactum, Aspergillus versicolor and Stachybotrys chartarum. A piece of wallpaper was found to be contaminated with these three fungi. A flowing stream of air was allowed over the wallpaper and samples of air of the room were then collected for testing.

On analysis of the indoor air the researchers found that the small particles of dust floating around in the house which could then be inhaled easily, contained toxins from these fungi. Also all fungi did not spread the toxins at the same rates they found. Some spread more toxins than others and this could help researchers to decide on which fungi species to concentrate on in terms of disease prevention they said.

 Could probiotics be used to treat depression? The medical site Medscape reported on a very small preliminary study (only 10 people) that tested that idea, with findings that suggested that taking certain probiotics does help treat the symptoms of mild to moderate depression. The bacteria taken were Lactobacillus helveticus and Bifidobacterium longum (in the product Probio'Stick). Specifically, the symptoms of mood, anhedonia (inability to feel pleasure), and sleep disturbance were significantly reduced after probiotoc therapy.

Sounds great, yes? But ....just a few months ago a much larger study was published where people were randomly assigned to either a placebo group or the treatment group (the same 2 probiotics: Lactobacillus helveticus and Bifidobacterium longum). It was also "double-blind" - so no one knew who got the placebo or the treatment. And here the results were: the probiotics did NOT help the depression symptoms. This study found "no evidence that the probiotic formulation is effective in treating low mood, or in moderating the levels of inflammatory and other biomarkers".

Why the different results? Maybe the "placebo effect" was why the 10 person study had a positive effect. Wanting and thinking something works can definitely influence results. (This is why ideally studies are double-blind, randomized, and with a placebo.) Or was it because the study was done "in association" with the manufacturers of Probio'Stick? Yup, it's not surprising the manufacturer of a product finds a "positive effect" from its product. Bottom line: Be careful and critical when reading "study results".

However, after saying all that - there is a "gut-brain axis" in humans, and some researchers are examining whether probiotics can treat various symptoms such as anxiety (here and here). So perhaps some other probiotic bacteria might work to treat depression.

The problematic study from Medscape: Probiotics Promising for Mild to Moderate Depression

Probiotics may be effective in reducing core depressive symptoms in treatment-naive patients with a mild to moderate form of the disorder, results of a new pilot study suggest. Investigators led by Caroline Wallace, PhD candidate, Queen's University, Kingston, Ontario, Canada, found that symptoms of mood, anhedonia, and sleep disturbance were significantly reduced with probiotic therapy after just 4 weeks, with results maintained at 8 weeks..... The hypothesis is that the effects are mediated via the gut-brain axis by reducing inflammation and increasing serotonin levels.

To assess the efficacy of probiotics in treatment-naive patients with depression, the researchers carried out a pilot study using Probio'Stick, a probiotic supplement that combines two different strains known to act on the gut-brain axis ― Lactobacillus helveticus R0052 and Bifidobacterium longum R0175. The 8-week, single-arm, open-label intervention pilot study involved 10 treatment-naive patients with major depressive disorder who were experiencing a current episode of depression..... Next steps will be to confirm these findings in a double-blind, randomized, placebo-controlled trial of Probio'Stick. 

Same probiotic bacteria, but no effect from the treatment. From The Australian and New Zealand Journal of Psychiatry: A double-blind, randomized, placebo-controlled trial of Lactobacillus helveticus and Bifidobacterium longum for the symptoms of depression.

No significant difference was found between the probiotic and placebo groups on any psychological outcome measure or any blood-based biomarker.

This study found no evidence that the probiotic formulation is effective in treating low mood, or in moderating the levels of inflammatory and other biomarkers. The lack of observed effect on mood symptoms may be due to the severity, chronicity or treatment resistance of the sample; recruiting an antidepressant-naive sample experiencing mild, acute symptoms of low mood, may well yield a different result. Future studies taking a preventative approach or using probiotics as an adjuvant treatment may also be more effective. Vitamin D levels should be monitored in future studies in the area. The results of this trial are preliminary; future studies in the area should not be discouraged.

Image result for Thaumarchaeota Something new to add to the list of what is in our skin microbiome - the community of microbes (bacteria, fungi, viruses) living on our skin. It turns out we also have archaea, which are single-celled microorganisms that are thought to be beneficial.

The human skin microbiome acts as a barrier protecting our body from pathogens and other environmental influences. The most common archaea found in the samples (from the chest area of 51 volunteers between the ages of 1 to 75 years) is called Thaumarchaeota. The results reveal that archaea are more abundant in people older than 60 years or younger than 12 years (as compared to middle-aged persons). But there were no differences between males and females. From Science Daily:

What's on your skin? Archaea, that's what

It turns out your skin is crawling with single-celled microorganisms -- and they're not just bacteria. A study by the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the Medical University of Graz has found that the skin microbiome also contains archaea, a type of extreme-loving microbe, and that the amount of it varies with ageThe researchers conducted both genetic and chemical analyses of samples collected from human volunteers ranging in age from 1 to 75. They found that archaea (pronounced ar-KEY-uh) were most abundant in subjects younger than 12 and older than 60

In addition to the influence of age, they found that gender was not a factor but that people with dry skin have more archaea. "Archaea might be important for the cleanup process under dry skin conditions," said Moissl-Eichinger. "The results of our genetic analysis (DNA-based quantitative PCR and next-generation sequencing), together with results obtained from infrared spectroscopy imaging, allowed us to link lower levels of sebum [the oily secretion of sebaceous glands] and thus reduced skin moisture with an increase of archaeal signatures."

It was not until the 1970s that scientists realized how different archaea were from bacteria, and they became a separate branch on the tree of life -- the three branches being Bacteria, Archaea, and Eukarya (which includes all plants and animals). Archaea are commonly found in extreme environments, such as hot springs and Antarctic ice. Nowadays it is known that archaea exist in sediments and in Earth's subsurface as well, but they have only recently been found in the human gut and linked with the human microbiome.

Their study focused on Thaumarchaeota, one of the many phyla of archaea, as little evidence of the others was found in the pilot study. "We know that Thaumarchaeota are supposed to be an ammonia-oxidizing microorganism, and ammonia is a major component of sweat, which means they might play a role in nitrogen turnover and skin health," Holman said. .... the team also correlated archaeal abundance with skin dryness, as middle-aged persons have higher sebum levels and thus moister skin than the elderly. So far, most archaea are known to be beneficial rather than harmful to human health. They may be important for reducing skin pH or keeping it at low levels, and lower pH is associated with lower susceptibility to infections.  [Original study.]

Image result for Thaumarchaeota Thaumarchaeota archaea. These single-celled organisms have just one membrane sac that encloses their bodies. Credit: Univ. of Washington

 The following article is about Dr. Janelle Ayres, a researcher in California, working on "beneficial bacteria" to help the body tolerate infections. This is different than the usual medical approach of fighting infections - where antibiotics are used to kill microbes.  Reading the article, my first thought was "Well, duh....of course this approach works." This is what we've been doing in using Lactobacillus sakei, a beneficial bacteria, in successfully treating sinusitis since early 2013! ..... The good news in reading this article is that using bacteria to treat infections or diseases seems to finally be going mainstream.

Ayres, and some of her colleagues, are interested in why some people can deal with infections, or can repair damaged tissue even during bouts of serious disease, while other people succumb to the disease. She believes she can develop drugs that will boost those qualities in patients who lack them, and help keep people alive through battles with sepsis, malaria, cholera, and a host of other diseases. Their approach looks at "tolerance" — which is a body’s ability to minimize damage while infected, and she calls it the “tolerance defense system.”

She is focusing on this approach because she feels that drugs that target bacteria (such as antibiotics) become useless because the bacteria evolve to resist those drugs. Instead, she thinks we can harness bacteria (even ones normally classified as pathogens) to make new drugs. Her approach to treating an infection could be summarized as: Don't fight it. Help the body tolerate it. Excerpts from STAT News:

She’s got a radical approach for the age of superbugs: Don’t fight infections. Learn to live with them

As her father lay dying of sepsis, Janelle Ayres spent nine agonizing days at his bedside. When he didn’t beat the virulent bloodstream infection, she grieved. And then she got frustrated. She knew there had to be a better way to help patients like her dad. In fact, she was working on one in her lab. Ayres, a hard-charging physiologist who has unapologetically decorated her lab with bright touches of hot pink, is intent on upending our most fundamental understanding of how the human body fights disease.

Scientists have focused for decades on the how the immune system battles pathogens. Ayres believes other elements of our physiology are at least as important — so she’s hunting for the beneficial bacteria that seem to help some patients maintain a healthy appetite and repair damaged tissue even during bouts of serious disease. If she can find them — and she’s already begun to do so — she believes she can develop drugs that will boost those qualities in patients who lack them and help keep people alive through battles with sepsis, malaria, cholera, and a host of other diseases. Her approach, in a nutshell: Stop worrying so much about fighting infections. Instead, help the body tolerate them.

An associate professor at the Salk Institute in the heart of San Diego’s booming biotech beach, Ayres is harnessing all manner of high-tech tools from the fields of microbiomics, genetics, and immunology — and looking to a menagerie of animals — to sort out why some individuals tolerate infection so much better than others. It’s work that’s desperately needed, Ayres said, as it becomes ever more clear that our standard approach to fighting infection using antibiotics and antivirals is hopelessly inadequate. The drugs don’t work for all diseases, they kill off good bacteria along with bad — and their wanton use is contributing to the rise of antibiotic resistant bacteria, or “superbugs,” which terrify disease experts because there are few ways to stop them.

....They went on to propose that the immune response to pathogens wasn’t the whole story, and that tolerance — a body’s ability to minimize damage while infected — may play a key role as well. Ayres has since gone on to call what she studies the “tolerance defense system.”

Society needs drugs that don’t target bacteria, which can so quickly evolve to evade our best medicines, she argues. Instead, she thinks we can harness those bacteria — even the ones normally classified as pathogens — to make new drugs that save lives by targeting an infected person’s tissues and organs. That would be an entirely new class of therapeutics, which could lessen our dependence on antibiotics and help save lives in cases, like her father’s, where antibiotics fail.

She’s been working furiously in her own lab, rolling out a series of studies that have found critical targets for new drugs. Her main focus: the trillions of bacteria — known collectively as the microbiome — that reside in our bodies but do not sicken us. Ayres suspects they might play a key role in the tolerance defense system. But if bacteria do help increase tolerance to disease, what strains are involved and what exactly are they doing?

Image result for pills wikipedia Hah!  A study that builds on what is already known by many women - that the non-prescription product D-mannose works for urinary tract infections (UTIs). D-mannose is amazingly effective for urinary tract infections caused by E. coli bacteria (up to 90% of UTIs), even infections that  keep recurring (30 to 50% of infections), and which don't respond to numerous antibiotics. D-mannose is effective because it attaches to E. coli bacteria, and prevents them from attaching to the walls of the urinary tract. But as women know, there are many (all effective) D-mannose products on the market - so the big pharmaceutical companies can't claim it as their own (with patents) for the big bucks $$$. So...this study is basically chemically reformulating the mannose sugar (which is in D-mannose) for a new product (mannosides) - one that they can claim as their own. Maybe it'll be a little better than ordinary D-mannose, and maybe not. Human studies are needed.

By the way, this study may be big news to physicians because most don't seem to know about D-mannose as a treatment for UTIs - they all seem to focus just on antibiotics and perhaps cranberry juice in treating UTIs. This may be because D-mannose is considered as an "alternative treatment". And I could find only one study that compares antibiotics and D-mannose for recurrent UTIs - and guess which one did a little better?  Yup...D-mannose (see post). From Medical Xpress:

New treatment reduces E. coli, may offer alternative to antibiotics

Urinary tract infections (UTIs) are among the most common infections, and they tend to come back again and again, even when treated. Most UTIs are caused by E. coli that live in the gut and spread to the urinary tractA new study from Washington University School of Medicine in St. Louis has found that a molecular decoy can target and reduce these UTI-causing bacteria in the gut. With a smaller pool of disease-causing bacteria in the gut, according to the researchers, the risk of having a UTI goes down...."This compound may provide a way to treat UTIs without the use of antibiotics."

Close to 100 million people worldwide acquire UTIs each year, and despite antibiotic treatment, about a quarter develop another such infection within six months. UTIs cause painful, burning urination and the frequent urge to urinate. In serious cases, the infection can spread to the kidneys and then the bloodstream, where it can become life-threatening. Most UTIs are caused by E. coli that live harmlessly in the gut. However, when shed in the feces, the bacteria can spread to the opening of the urinary tract and up to the bladder, where they can cause problems. Conventional wisdom holds that UTIs recur frequently because bacterial populations from the gut are continually re-seeding the urinary tract with disease-causing bacteria.

Hultgren, graduate student Caitlin Spaulding, and colleagues reasoned that if they could reduce the number of dangerous E. coli in the gut, they could reduce the likelihood of developing a UTI and possibly prevent some recurrent infections. First, the researchers identified genes that E. coli need to survive in the gut. One set of genes coded for a kind of pilus, a hairlike appendage on the surface of E. coli that allows the bacteria to stick to tissues, like molecular velcro. Without this pilus, the bacteria fail to thrive in the gut. Earlier studies found that the identified pilus attaches to a sugar called mannose that is found on the surface of the bladder. Grabbing hold of mannose receptors on the bladder with the pilus allows the bacteria to avoid being swept away when a person urinates. Bacteria that lack this pilus are unable to cause UTIs in mice.

Previously, Hultgren and co-author, James W. Janetka, PhD, an associate professor of biochemistry and molecular biophysics at Washington University, chemically modified mannose to create a group of molecules, called mannosides, that are similar to mannose but changed in a way that the bacteria latch onto them more tightly with their pili. Unlike mannose receptors, though, these mannosides are not attached to the bladder wall, so bacteria that take hold of mannosides instead of mannose receptors are flushed out with urine.

Since the researchers found that this same pilus also allows the bacteria to bind in the gut, they reasoned that mannoside treatment could reduce the number of E. coli in the gut and perhaps prevent the spread of the bacteria to the bladder. To test this idea, they introduced a disease-causing strain of E. coli into the bladders and guts of mice to mirror the pattern seen in people. In women with UTIs, the same bacteria that cause problems in the bladder usually also are found living in the gut.

The researchers gave the mice three oral doses of mannoside, and then measured the numbers of bacteria in the bladders and guts of the mice after the last dose of mannoside. They found that the disease-causing bacteria had been almost entirely eliminated from the bladder and reduced a hundredfold in the gut, from 100 million per sample to 1 million. .... researchers measured the composition of the gut microbiome after mannoside treatment. They found that mannoside treatment had minimal effect on intestinal bacteria other than the ones that cause most UTIs. This is in stark contrast to the massive changes in the abundance of many microbial species seen after treatment with antibiotics. Furthermore, since mannoside is not an antibiotic, it potentially could be used to treat UTIs caused by antibiotic-resistant strains of bacteria, a growing problem. 

Image result for bdellovibrio bacteriovorus Great idea and one that this blog has been pushing for a long time - the use of beneficial bacteria to get rid of other harmful bacteria. Some researchers refer to the bacteria acting as "living antibiotics" when they overpower harmful bacteria.

Researchers such as Daniel Kadouri, a micro-biologist at Rutgers School of Dental Medicine in Newark, are studying bacteria that aggressively attack harmful  bacteria, and calling them "predator bacteria". They are focusing on one specific bacteria - Bdellovibrio bacteriovorus, a gram-negative bacteria that dines on other gram-negative bacteria. They hope to eventually be able to give this bacteria as a medicine to humans , and then this predator bacteria would overpower and destroy "superbugs" (pathogenic bacteria that are resistant to many antibiotics). A great idea, but unfortunately the researchers think that it'll take about 10 more years of testing and development before it's ready for use in humans. From Science News:

Live antibiotics use bacteria to kill bacteria

The woman in her 70s was in trouble. What started as a broken leg led to an infection in her hip that hung on for two years and several hospital stays. At a Nevada hospital, doctors gave the woman seven different antibiotics, one after the other. The drugs did little to help her. Lab results showed that none of the 14 antibiotics available at the hospital could fight the infection, caused by the bacterium Klebsiella pneumoniae.... The CDC’s final report revealed startling news: The bacteria raging in the woman’s body were resistant to all 26 antibiotics available in the United States. She died from septic shock; the infection shut down her organs.

Kallen estimates that there have been fewer than 10 cases of completely resistant bacterial infections in the United States. Such absolute resistance to all available drugs, though incredibly rare, was a “nightmare scenario,” says Daniel Kadouri, a micro-biologist at Rutgers School of Dental Medicine in Newark, N.J. Antibiotic-resistant bacteria infect more than 2 million people in the United States every year, and at least 23,000 die, according to 2013 data, the most recent available from the CDC.

It’s time to flip the nightmare scenario and send a killer after the killer bacteria, say a handful of scientists with a new approach for fighting infection. The strategy, referred to as a “living antibiotic,” would pit one group of bacteria — given as a drug and dubbed “the predators” — against the bacteria that are wreaking havoc among humans.

The notion of predatory bacteria sounds a bit scary, especially when Kadouri likens the most thoroughly studied of the predators, Bdellovibrio bacteriovorus, to the vicious space creatures in the Alien movies. B. bacteriovorus, called gram-negative because of how they are stained for microscope viewing, dine on other gram-negative bacteria. All gram-negative bacteria have an inner membrane and outer cell wall. The predators don’t go after the other main type of bacteria, gram-positives, which have just one membrane.

“It’s a very efficient killing machine,” Kadouri says. That’s good news because many of the most dangerous pathogens that are resistant to antibiotics are gram-negative (SN: 6/10/17, p. 8), according to a list released by the WHO in February. It’s the predator’s hunger for the bad-guy bacteria, the ones that current drugs have become useless against, that Kadouri and other researchers hope to harness.  Pitting predatory against pathogenic bacteria sounds risky. But, from what researchers can tell, these killer bacteria appear safe. “We know that [B. bacteriovorus] doesn’t target mammalian cells,” Kadouri says.

Predatory bacteria can efficiently eat other gram-negative bacteria, munch through biofilms and even save zebrafish from the jaws of an infectious death. But are they safe? Kadouri and the other researchers have done many studies, though none in humans yet, to try to answer that question.... Other studies looking for potential toxic effects of B. bacteriovorus have so far found none. Both Mitchell and Kadouri tested B. bacteriovoruson human cells and found that the predatory bacteria didn’t harm the cells or prompt an immune response. The researchers separately reported their findings in late 2016 in Scientific Reports and PLOS ONE.

Image result for bdellovibrio bacteriovorus Bdellovibrio bacteriovorus  Credit: BBC

Bdellovibrio bacteriaBACTERIAL COMBATANTS Bdellovibrio bacteria (yellow) attack larger bacteria (blue), using the prey’s remains to replicate. Bdellovibrio microbes are a kind of living antibiotic (predator bacteria). Credit: Science News

Image result for pills wikipedia Nowadays there is tremendous concern about the spread of antibiotic resistant bacteria  or "superbugs" throughout the world. Articles frequently mention India being at the epicenter of this crisis - that is, the source of many antibiotic resistant strains (both in and out of hospitals), which then travel throughout the world due to global travel. The massive overuse and misuse of antibiotics (whether in humans, animals, and even crops) is usually given as the major reason for the development of antibiotic resistant strains of bacteria (here, here, and here).

Thus the following article about unchecked pollution from pharmaceutical companies in India fueling the creation of deadly superbugs was shocking to read - and it may explain why the problem is so severe there. Note that the Indian companies supply just about all the world's major drug companies with antibiotics and anti-fungals. It appears that the companies are ignoring local laws (which have been called "toothless") which would cut down on the pollution. What is stressed in the article is that one of the world’s biggest drug production hubs (the Indian city of Hyderabad) is producing dangerous levels of pharmaceutical pollution, and the international agencies that ensure drug safety are basically ignoring this problem (and doing little to address it).

Thousands of tons of pharmaceutical waste is produced each day by the many pharmaceutical companies in Hyderabad, India, which is then contaminating the water sources in the area. With the result that water samples (from rivers, lakes, groundwater, drinking water, surface water, treated sewage water) in  that area contain bacteria and fungi resistant to multiple drugs (superbugs), and these superbugs then get spread to humans throughout India and eventually globally.   This article is definitely worth reading in its entirety. Excerpts from The Bureau of Investigative Journalism:

Big Pharma's Pollution Is Creating Deadly Superbugs While The World Looks The Other Way

Industrial pollution from Indian pharmaceutical companies making medicines for nearly all the world’s major drug companies is fueling the creation of deadly superbugs, suggests new research. Global health authorities have no regulations in place to stop this happening. A major study published today in the prestigious scientific journal Infection found “excessively high” levels of antibiotic and antifungal drug residue in water sources in and around a major drug production hub in the Indian city of Hyderabad, as well as high levels of bacteria and fungi resistant to those drugs. Scientists told the Bureau the quantities found meant they believe the drug residues must have originated from pharmaceutical factories.

The presence of drug residues in the natural environment allows the microbes living there to build up resistance to the ingredients in the medicines that are supposed to kill them, turning them into what we call superbugs. The resistant microbes travel easily and have multiplied in huge numbers all over the world, creating a grave public health emergency that is already thought to kill hundreds of thousands of people a year.

When antimicrobial drugs stop working common infections can become fatal, and scientists and public health leaders say the worsening problem of antibiotic resistance (also known as AMR) could reverse half a century of medical progress if the world does not act fast. Yet while policies are being put into place to counter the overuse and misuse of drugs which has propelled the crisis, international regulators are allowing dirty drug production methods to continue unchecked. Global authorities like the Food and Drug Administration and the European Medicines Agency strictly regulate drug supply chains in terms of drug safety - but environmental standards do not feature in their rulebook. Drug producers must adhere to Good Manufacturing Practices (GMP) guidelines - but those guidelines do not cover pollution.

The international bodies say the governments of the countries where the drugs are made are the ones responsible for stopping pollution - but domestic legislation is having little impact on the ground, say the study's authors. The lack of international regulation must be addressed, they argue, highlighting the grave public health threat faced by antibiotic resistance as well as the rampant global spread of superbugs from India, which has become an epicentre of the crisis.

A group of scientists based at the University of Leipzig worked with German journalists to take an in-depth look at pharmaceutical pollution in Hyderabad, where 50% of India’s drug exports are produced. A fifth of the world’s generic drugs are produced in India, with factories based in Hyderabad supplying Big Pharma and public health authorities like World Health Organisation with millions of tons of antibiotics and antifungals each year.

The researchers tested 28 water samples in and around the Patancheru-Bollaram Industrial zone on the outskirts of the city, where more than than 30 drug manufacturing companies supplying nearly all the world’s major drug companies are based. Thousands of tons of pharmaceutical waste are produced by the factories each day, the paper says. Almost all the samples contained bacteria and fungi resistant to multiple drugs (known as MDR pathogens, the technical name for superbugs). Researchers then tested 16 of the samples for drug residues and found 13 of them were contaminated with antibiotics and antifungals. Previous studies have shown how exposure to antibiotics and antifungals in the environment causes bacteria and fungi to develop immunity to those drugs.

Environmental pollution and poor management of wastewater in Hyderabad is causing “unprecedented antimicrobial drug contamination” of surrounding water sources, conclude the researchers - contamination which appears to be driving the creation and spread of dangerous superbugs which have spread across the world. Combined with the mass misuse of antibiotics and poor sanitation, superbugs are already having severe consequences in India - an estimated 56,000 newborn babies die from resistant infections there each year.

The companies in question strongly deny that their factories pollute the environment, and the sheer number of factories operating in Hyderabad means it is impossible to identify exactly which companies are responsible for the contamination found in the samples tested. What is clear is one of the world’s biggest drug production hubs is producing dangerous levels of pharmaceutical pollution, and the international bodies tasked with ensuring drug safety are doing little to address it.

Around 170 companies making bulk drugs like antibiotics operate in and around Hyderabad, the majority clustered in sprawling industrial estates along the banks of the Musi river. Companies in Europe and the US, as well as health authorities like WHO and the UK’s NHS are reliant on drugs being produced in these factories.

The area has long been criticised for its pollution, which has continued unabated despite decades of campaigning by Indian NGOs, say the report authors. In 2009 the Patancheru-Bollaram zone was classified as “critically polluted” in India’s national pollution index and construction in the area was banned. But the government relaxed the rules in 2014 and building was allowed to begin again. Last year India’s Supreme Court ordered the country’s pharmaceutical companies to operate a zero liquid waste policy, but “massive violations” have reportedly occurred, says the Infection report....India has become the epicentre of the global drug resistance crisis, with 56,000 newborn Indian babies estimated to die each year from drug-resistant blood infections, and 70 to 90% of people who travel to India returning home with multi-drug-resistant bacteria in their gut, according to the study.

Researchers took water samples from rivers, lakes, groundwater, drinking water and surface water from rural and urban areas in and around the industrial estate, as well as pools near factories and water sources contaminated by sewage treatment plants. Four were taken from taps, one from a borehole, and the remaining 23 were classed as environmental samples. The samples were tested for bacteria resistant to multiple drugs (known as MDR pathogens, the technical name for superbugs). The researchers then tested 16 of the samples for the antibiotics and antifungals used to treat infections. All samples apart from one taken from tap water at a four star hotel were found to contain drug-resistant bacteria. All 23 environmental samples contained carbapenemase-producing bacteria - a group of bugs dubbed the “nightmare bacteria” because they are virtually untreatable and kill 40-50% of people whose blood gets infected with them.

Of the 16 samples then tested for drug residue, 13 were found to be contaminated with antibiotics and antifungals, some in disturbingly high levels. The researchers compared the levels of residue to limits recommended by leading microbiologists; once levels exceed those limits it is likely that superbugs will develop. The amounts of antimicrobials found in the new tests were “eye-wateringly high”, said Dr Mark Holmes, a microbiologist at the University of Cambridge. “The quantities involved mean the amount in the water is almost the same as a therapeutic dose,” he said, calling on the Indian authorities to investigate immediately by testing each factory’s effluent. 

There are reams of regulations and stipulations that manufacturers have to adhere to in order to export their products to the US and Europe – known as the Good Manufacturing Practices (GMP) framework. These focus on making sure drugs are safe, pure, and effective. Stringent inspections by the FDA, WHO and European authorities check that these rules are being followed. However these regulations do not address environmental concerns. Inspectors have no mandate to sanction a factory for polluting, failing to treat its waste or other environmental problems – this falls within the remit of local governments.

 Stop using the damn antibacterial products! Yes, stop using stuff that says "antibacterial", "antimicrobial", "germ-killing",  or "anti-odor". Whether in personal care items, or bedding, or socks, or hand wipes, or wherever else you see those labels - don't buy them and try to avoid using them. Plain soap works just as well for cleaning hands (see FDA page). The "antibacterial" chemicals in soaps, toothpastes, body washes, etc. are absorbed by the body where they may do harm. Yes - HARM. The harms may not be known initially, but over and over, at some later point, the various chemicals are shown to cause harm - whether in humans or the environment, or both.

A case in point is the antimicrobial triclosan. It has been used for years in soooo many products, and religiously used by those concerned with "killing germs". It is now finally banned by the FDA from soaps and body washes because of the harms it causes. These include various health effects - and also because it's an endocrine disruptor (disrupts hormones).  And yes, it also crosses the placenta and has been associated with effects on the developing baby. For example, a recent study found an "inverse relationship" - that higher levels of triclosan in the mothers' urine during pregnancy (meaning they had used and absorbed more triclosan products) were associated with lower birth weight, length, head circumference, and gestational age (length of pregnancy). Of special concern to us at Lacto Bacto is that it also disrupts our microbes - remember that antimicrobial products (whether Triclosan in soap or antibiotics) kill off both beneficial and harmful bacteria.

As a recent study shows - triclosan is absorbed by pregnant women (and can be measured in their urine) and, it is absorbed and found in the urine of children who washed their hands or brushed their teeth with products containing triclosan.  And the higher the socioeconomic status, the more triclosan in the body - after all, people pay a premium for products that are "antimicrobial". While triclosan is now banned from being used in certain products (soaps and body washes), it is still allowed in many, many other products. And there are all those other antimicrobials that also should NOT be used. So please read the labels, especially the ingredient lists, and try to avoid antimicrobial, antibacterial, germ-killing, and anti-odor products. From Environmental health News:

Hygiene leaves kids with loads of triclosan

Levels of a controversial chemical meant to kill bacteria spike in the bodies of young children after they brush their teeth or wash their hands, according to a new study. U.S. manufacturers are phasing triclosan out of hand soaps after the Food and Drug Administration banned it effective last year amid concerns that the compound disrupted the body's hormone systems. It remains in Colgate Total toothpaste, some cleaning products and cosmetics. Health experts say exposure is best avoided for babies in the womb and developing children.

The latest study, published in the journal Environmental Science & Technology, is one of the first to show that children’s levels rise through their first few years of life. Hand washing and teeth brushing have speedy, significant impact on levels, the researchers found. Braun and colleagues tested the urine of 389 mothers and their children from Cincinnati, collecting samples from the women three times during pregnancy and from the children periodically between 1 and 8 years old.

They found triclosan in more than 70 percent of the samples. Among 8 year olds, levels were 66 percent higher in those that used hand soap. And more washing left the children with higher loads—those who reported washing their hands more than five times per day had more than four times the triclosan concentrations than those washing once or less per day. Children who had brushed their teeth within the last day had levels 2.5 times higher than those who had a toothpaste-free 24-hour span.

Braun said the levels of triclosan rose as the children aged, eventually leveling off. “Their levels were almost to moms’ levels by the time they reached 5 to 8 years of age.” This, he said, is likely due to more frequent use of personal care products as the kids aged. Despite the hand soap ban, triclosan remains on the market because it is effective at fighting plaque and gingivitis. Colgate uses 0.3 percent of the antibacterial to “fight harmful plaque germs.”.

Braun, however, said there is “quite compelling” evidence from animal studies that triclosan decreases thyroid hormone levels. Properly functioning thyroid hormones are critical for brain development. Just last month, using the same mothers and children, Braun and others reported that mothers’ triclosan exposure during pregnancy was linked to lower birth weights, smaller heads and earlier births. In addition, Pessah and colleagues reported triclosan hinders proper muscle development. The researchers used mice and fish, finding that triclosan affects the process responsible for muscle contraction.

Image result for washing hands OK,  the study results sound promising: that washing with cold water is as good as washing with warm or hot water for removing bacteria from the hands. And that type of soap didn't matter - both the anti-microbial soap and ordinary soap were equally effective. But...the researchers only looked at one strain of bacteria - E. coli (full name Escherichia coli (ATCC 11229)), and there are MANY microbes and viruses out there that cause problems. So I would view it as a nice start ( a preliminary study), but not the final word. From Science Daily:

Handwashing: Cool water as effective as hot for removing germs

We all know that washing our hands can keep us from spreading germs and getting sick. But a new Rutgers-New Brunswick study found that cool water removes the same amount of harmful bacteria as hot. ....In the Rutgers study, published in the June issue of the Journal of Food Protection, high levels of a harmless bacteria were put on the hands of 21 participants multiple times over a six-month period before they were asked to wash their hands in 60-degree, 79-degree or 100-degree water temperatures using 0.5 ml, 1 ml or 2 ml volumes of soap.

 "Also we learned even washing for 10 seconds significantly removed bacteria from the hands." While the study indicates that there is no difference between the amount of soap used, more work needs to be done to understand exactly how much and what type of soap is needed to remove harmful microbes from hands, said co-author Jim Arbogast, vice president of Hygiene Sciences and Public Health Advancements for GOJO. "This is important because the biggest public health need is to increase handwashing or hand sanitizing by food service workers and the public before eating, preparing food and after using the restroom," Arbogast said.

These findings are significant, particularly to the restaurant and food industry, because the U.S. Food and Drug Administration issues guidelines, every four years, to states. Those guidelines currently recommend that plumbing systems at food establishments and restaurants deliver water at 100 degrees Fahrenheit for handwashing.

Schaffner said the issue of water temperature has been debated for a number of years without enough science to back-up any recommendation to change the policy guidelines or provide proof that water temperature makes a difference in hand hygiene. Many states, in fact, interpret the FDA guidelines as a requirement that water temperature for handwashing must be 100 degrees, he said. [Original study.]

 An amazing new study is about to start in Sweden - this study will see if "snot transplants" work for the treatment for chronic sinusitis! Will this turn out to be a permanent treatment? While studies show that probiotic supplements tend not to stick around in the gut (they're gone after about a week), people receiving a fecal microbiota transplant (FMT) find that these microbial communities do stick around (colonize).  So there is something about getting an entire microbial community (bacteria, fungi, viruses) that is more effective than just a few species that are in typical probiotic supplements.

We have found the same problem in sinusitis treatment - the Lactobacillus sakei treatment works to treat sinusitis, but then doesn't stick around - as evidenced by having to treat again after a cold or sore throat.  And so we treat again - and again it's successful. And this happens again and again. Sooo.... it's important to find out if a transplant of the entire microbial community of snot (the sinonasal microbiome) works. And if works, will the treatment be a permanent one? I also wonder.... Several people have mentioned this idea to me, but has anyone with sinusitis tried a "snot transplant" at home? (And yes, this is self-experimentation.)

The description and purpose of the study refer to what this site has discussed for several years: the sinus microbiome is out of whack (dysbiosis) in chronic rhinosinusitis (CRS), whether due to antibiotics or something else (viruses, etc). The study will enroll 30 people, start May 15, 2017, and end December 31, 2018. The purpose of the study is to have patients with chronic rhinosinusits without nasal polyps (CRSsNP) receive microbiome transplants from healthy donors without any sinus problems. They would receive a snot transplant for 5 days in a row. Unfortunately we'll have to wait at least 1 1/2 years for any results. Excerpts from clinical trails.gov:

Sinonasal Microbiome Transplant as a Therapy for Chronic Rhinosinusitis Without Nasal Polyps (CRSsNP)

Purpose: Chronic rhinosinusitis (CRS) is a disease associated with impaired quality of life and substantial societal costs. Though sometimes co-appearing with other conditions, such as asthma, allergy, and nasal polyps, many cases present without co-morbidities. Micro-biological diagnostic procedures are frequently undertaken, but the results are often inconclusive. Nevertheless, antibiotics are usually prescribed, but invariably with limited and temporary success. Accordingly, there is a need for new treatments for CRS.

Recent studies indicate that the sinuses are colonized by a commensal microbiome of bacteria and that damage to this natural microbiome, by pathogens or antibiotics, may cause an imbalance that may promote CRS. Therefore, treatments that restore the commensal microbiome may offer an alternative to current protocols. Arguably, as suggested by studies on patients with intestinal infections (next paragraph), one such possibility may be to transfer a "normal microbiome" to patients with CRS.

A disrupted microbiome is linked to intestinal clostridium difficile infections. Probiotic restitution therapy may be effective even in cases recalcitrant to antibiotic treatment. However, a key to effective probiotic restitution is selecting the bacteria that facilitate regrowth of normal microbiome. As an answer to this, researchers have chosen to simply transplant the entire microbiome from a healthy donor. In the case of clostridium difficile infection in the form of faecal transplants.

In this study, we will examine the possibility to treat patients with chronic rhinosinusitis without polyps (CRSsNP) with complete sinonasal microbiomes obtained from healthy donors. Our analysis will focus on symptoms and signs of disease as well as on nasal inflammatory and microbiological indices.

Detailed DescriptionOver the last few years the theory of a damaged microbiome as a cause or promoting factor behind chronic rhinosinusitis has gained increasing interest from the scientific community. A number of studies aimed at investigating the microbiota of the nose and paranasal sinuses in health and disease has been published with very varying outcomes. Furthermore, other studies have been aimed at probiotic treatment of sinonasal disease either locally or through immunologic manipulation via the gastrointestinal microbiota.

A problem common to all these studies is that studies examining the normal nasal microbiota have identified a great amount of different bacterial species. It is as of today not known which individual species or combinations of species that promotes health

In this study the investigators aim at recruiting patients suffering from chronic rhinosinusitis without polyps (CRSsNP) and healthy participants without any history sinonasal disease. The patients and the healthy participants will be examined for infectious diseases in a manner similar to other medical transplant procedures to minimize the risk for the recipients. The patients will then be treated with antibiotics to reduce the bacterial load of the nose and the paranasal sinuses. After the patient has finished the antibiotic treatment a microbiome transplant will be harvested from the healthy participant as a nasal lavage. The raw lavage fluid will then be used to transplant the microbiome to the patient. The procedure will be repeated for five consecutive days.

The outcome measures analysed will focus on subjective sinonasal health and symptoms of the patients but also include nasal inflammatory and microbiological indices.