An amazing new study is about to start in Sweden - this study will see if "snot transplants" work for the treatment for chronic sinusitis! Will this turn out to be a permanent treatment? While studies show that probiotic supplements tend not to stick around in the gut (they're gone after about a week), people receiving a fecal microbiota transplant (FMT) find that these microbial communities do stick around (colonize).  So there is something about getting an entire microbial community (bacteria, fungi, viruses) that is more effective than just a few species that are in typical probiotic supplements.

We have found the same problem in sinusitis treatment - the Lactobacillus sakei treatment works to treat sinusitis, but then doesn't stick around - as evidenced by having to treat again after a cold or sore throat.  And so we treat again - and again it's successful. And this happens again and again. Sooo.... it's important to find out if a transplant of the entire microbial community of snot (the sinonasal microbiome) works. And if works, will the treatment be a permanent one? I also wonder.... Several people have mentioned this idea to me, but has anyone with sinusitis tried a "snot transplant" at home? (And yes, this is self-experimentation.)

The description and purpose of the study refer to what this site has discussed for several years: the sinus microbiome is out of whack (dysbiosis) in chronic rhinosinusitis (CRS), whether due to antibiotics or something else (viruses, etc). The study will enroll 30 people, start May 15, 2017, and end December 31, 2018. The purpose of the study is to have patients with chronic rhinosinusits without nasal polyps (CRSsNP) receive microbiome transplants from healthy donors without any sinus problems. They would receive a snot transplant for 5 days in a row. Unfortunately we'll have to wait at least 1 1/2 years for any results. Excerpts from clinical trails.gov:

Sinonasal Microbiome Transplant as a Therapy for Chronic Rhinosinusitis Without Nasal Polyps (CRSsNP)

Purpose: Chronic rhinosinusitis (CRS) is a disease associated with impaired quality of life and substantial societal costs. Though sometimes co-appearing with other conditions, such as asthma, allergy, and nasal polyps, many cases present without co-morbidities. Micro-biological diagnostic procedures are frequently undertaken, but the results are often inconclusive. Nevertheless, antibiotics are usually prescribed, but invariably with limited and temporary success. Accordingly, there is a need for new treatments for CRS.

Recent studies indicate that the sinuses are colonized by a commensal microbiome of bacteria and that damage to this natural microbiome, by pathogens or antibiotics, may cause an imbalance that may promote CRS. Therefore, treatments that restore the commensal microbiome may offer an alternative to current protocols. Arguably, as suggested by studies on patients with intestinal infections (next paragraph), one such possibility may be to transfer a "normal microbiome" to patients with CRS.

A disrupted microbiome is linked to intestinal clostridium difficile infections. Probiotic restitution therapy may be effective even in cases recalcitrant to antibiotic treatment. However, a key to effective probiotic restitution is selecting the bacteria that facilitate regrowth of normal microbiome. As an answer to this, researchers have chosen to simply transplant the entire microbiome from a healthy donor. In the case of clostridium difficile infection in the form of faecal transplants.

In this study, we will examine the possibility to treat patients with chronic rhinosinusitis without polyps (CRSsNP) with complete sinonasal microbiomes obtained from healthy donors. Our analysis will focus on symptoms and signs of disease as well as on nasal inflammatory and microbiological indices.

Detailed DescriptionOver the last few years the theory of a damaged microbiome as a cause or promoting factor behind chronic rhinosinusitis has gained increasing interest from the scientific community. A number of studies aimed at investigating the microbiota of the nose and paranasal sinuses in health and disease has been published with very varying outcomes. Furthermore, other studies have been aimed at probiotic treatment of sinonasal disease either locally or through immunologic manipulation via the gastrointestinal microbiota.

A problem common to all these studies is that studies examining the normal nasal microbiota have identified a great amount of different bacterial species. It is as of today not known which individual species or combinations of species that promotes health

In this study the investigators aim at recruiting patients suffering from chronic rhinosinusitis without polyps (CRSsNP) and healthy participants without any history sinonasal disease. The patients and the healthy participants will be examined for infectious diseases in a manner similar to other medical transplant procedures to minimize the risk for the recipients. The patients will then be treated with antibiotics to reduce the bacterial load of the nose and the paranasal sinuses. After the patient has finished the antibiotic treatment a microbiome transplant will be harvested from the healthy participant as a nasal lavage. The raw lavage fluid will then be used to transplant the microbiome to the patient. The procedure will be repeated for five consecutive days.

The outcome measures analysed will focus on subjective sinonasal health and symptoms of the patients but also include nasal inflammatory and microbiological indices.

 Great article about the importance of both dirt (it's alive!) and exposure to nature. Main points: It’s estimated that children now spend less time outside than the average prisoner, and that that the average American adult now spends 93 percent of their life indoors (in our homes, workplaces, cars, etc.). It is now thought that human beings need to be exposed to lots of microbes when young for proper immune system development - and this means exposure to the microbes in dirt (for example, young children benefit from playing in the dirt!). There is much harm on many levels from monocultures (whether huge fields of only one crop or "perfect" lawns) sustained by large amounts of chemicals (pesticides and fertilizers). In contrast, a lawn with diversity (clover, flowering "weeds", etc) avoids the use of dangerous chemicals, has benefits to wildlife and humans, and is also a "bee habitat".

Also, what is rarely discussed, but very important to the health of our environment: An estimated quarter of a million acres are paved or repaved in the United States each year - so that “asphalt is the land’s last crop". Paving over the land is "soil sealing", because this cuts off air and water, and kills the microorganisms and insects that live there. This results in dirt being killed off forever. Yikes! Why isn't this discussed more? Excerpts from National Geographic:


It’s estimated that children now spend less time outside than the average prisoner. This could have devastating effects: Kids need to be exposed to the microbes in the soil to build up their defences against diseases that may attack them later. But it’s not just children, Paul Bogard explains in his new book, The Ground Beneath Us. The EPA estimates that the average American adult now spends 93 percent of their life indoors. As we retreat indoors, more and more of the earth is disappearing, with an estimated quarter of a million acres paved or repaved in the United States each year

When National Geographic caught up with Bogard by phone at his home in Minnesota, the author explained why Iowa is the most transformed state in the U.S., how soil is alive but we’re killing it, and how places where terrible things happened can become sacred ground.

You write, “We are only just now beginning to understand the vast life in the soil, what it does, and how our activities on the surface may affect it.” Talk us through some highlights of the new science—and how you became so passionate about dirt.

It began with this statistic: that those of us in the Western world now spend about 90-95 percent of our time inside, in our houses, workplaces, in our cars. We’re living our lives separated from the natural world. When we walk outside, many of us walk on pavement. There’s this literal separation from the natural ground, from the soil, the dirt. It made me think, what are the costs of this separation? And it struck me as symbolic of our separation of these many different kinds of grounds that sustain us. Our food, water, energy, even our spirits come from these different grounds.

One of the first scientific discoveries I found was the hypothesis that human beings need to be exposed to the biota in the dirt, on the ground, especially when they’re kids, as a way of inoculating us to diseases that appear later in life. Kids these days are not being exposed to dirt because they’re not allowed to play outside. Their parents think dirt is dirty. But both the newest science and the oldest traditions tell us the same thing, which is that the ground is alive. The ground gives us life. And in the book, I tried to touch on both of those things.

One expert you quote says, “asphalt is the land’s last crop.” Talk about “soil sealing” and how roads and suburbs are literally eating away at the ground beneath our feet.

Soil sealing is one of the most shocking things I learned about. When we pave over the natural ground, we cut it off from the air and water that the life in the ground needs to stay alive. We essentially kill that ground. There is an argument that, if we pulled up the pavement and worked hard to rejuvenate that ground, we could bring it back. But the scientists I talked to said, when you pave it over, it’s the last crop, the last thing that’s going to grow there. We’re not moving in the direction of pulling pavement up. We’re moving in the opposite direction where we’re paving some of our most fertile ground, the ground that we’re going to need to feed a growing population.

You also had childhood affection for Iowa. But when you went back to research your book, you changed your mind. Why?

As a child, I was enamoured with the beauty of the green corn stalks, the black dirt, and what I thought was the natural topography. Coming back older and with a new understanding of the ground, it made me uncomfortable because Iowa is the most transformed state in the union. Some 97 percent of the natural ground has been altered, changed, or transformed. As one biologist said, “it’s an open air monoculture owned by monopolies.” So, instead of my romantic, childhood view of miles of corn stalks, the beauty of life growing, and the colour green, I saw it as this monoculture where another life isn’t allowed to grow.

Americans love their lawns and spend billions of dollars keeping them green and weed free. But we are also paying a high price for this perfect turf, aren’t we?

Oh my! We really are, certainly ecologically, paying a high price. America’s greatest crop, the thing we grow the most of, is our turf grass lawns. And the amounts of pesticides and chemical fertilisers we dump onto these lawns, and the amount of water that we use to grow them, is enormous. As a result, we have problems with runoff draining into our rivers and the lawns themselves tend to become monocultures, where nothing else grows but the turf grass. What a massive opportunity is being lost! We could have lawns that are more biologically diverse and pollinator-friendly. There’s also evidence that a number of illnesses are associated with coming into contact with these chemical fertilisers and pesticides.

 Once again a study looked at biofilms in sinuses - but this time in the sinuses of healthy people and not those with sinusitis. Various different species of bacteria and small size "microcolonies" or biofilms were found in the healthy maxillary sinuses of all 30 people - so yes, it appears that the presence of biofilms in the sinuses is normal in healthy people. And yes, the presence of bacteria (even some low levels of species which are typically associated with sinusitis) are normally found in the sinuses of healthy people.  (Earlier research also found this last finding.)

The researchers state that it is normal for people to have "small size bacterial microcolonies" (of different kinds of bacteria) in the sinuses. The researchers theorized that the biofilms are probably "in equilibrium" under the influence of  "inhibiting defensive factors of the body", but they can become a source of infection if there are favorable conditions (such as illness). In other words, the researchers said that these biofilms are more like "bacteria films" in that they contain bacteria, but they live in small colonies that don't cause an inflammatory response with sinusitis symptoms.

One negative of this study was that advanced genetic sequencing was not done on the samples. Instead all samples taken from the people were cultured, which we now know misses a lot of bacterial and other microbial species (fungi, viruses). They looked at the microcolonies (biofilms) with scanning microscopes. Thus, while they found an assortment of bacteria on the sinuses of each person - they only found a total of 41 bacterial species among 30 persons. This is in contrast to studies using modern genetic sequencing that found hundreds of microbial species in healthy sinus microbiomes (microbial communities).

The other issue is that it is not clear to me if there were biofilms or  microcolonies that contained "beneficial" species in any of the samples. Other research suggests that biofilms of beneficial bacteria are also found in humans, and that this is one way beneficial bacteria that normally can't survive with exposure to oxygen can survive oxygen (the slime coating on the colony protects the bacteria within).

Other studies also stress that in healthy people there is "homeostasis" or "equilibrium" among all the microbes living in the sinuses, - a microbial community (which includes biofilms), and which helps maintain sinus health. See post with discussion of Mackenzie et al 2017 study: "A stable network of microbial interactions, established through processes such as niche competition, nutrient cycling, immune evasion, and biofilm formation help maintain homeostasis during health." But, as has been usual in recent sinus research, the current study also stated that much is unknown, that there are theories which are not yet proven one way or another, and more research needs to be done. Of course.... From  PLoS ONE:

The presence of bacterial microcolonies on the maxillary sinus ciliary epithelium in healthy young individuals

The aim of this cross-sectional in vitro study was to evaluate the mucosal surfaces of healthy maxillary sinuses, explore different forms of bacterial microorganism colonies present on the mucous membrane, and determine a mucosal surface area they occupy. Samples of the maxillary sinus mucosa were collected from 30 healthy patients (M = 11; F = 19). The material was obtained during the Le Fort I osteotomy performed during corrective jaw surgery. The morphological and morphometric analysis of sinus mucosa and bacterial film that was grown on it was performed using scanning electron microscopy (SEM) as well as imaging software.

Scanning electron microscopy analysis showed the presence of different bacterium and bacteria-like structures in all the analyzed samples. In most cases, the bacterial film was mostly composed of diplococci-like and streptococci-like structures on the mucosa of the paranasal sinus. In any case, the mucous layer did not cover the whole lining of the evaluated sample. Each colony consists of more than 20 single bacterial cells, which has grown in aggregates.

Under the conditions of normal homeostasis of the body, the maxillary sinuses present diverse bacterial colonization. The bacteria are dispersed or concentrated in single microcolonies of the biofilm on the border of the mucous covering the ciliary epithelium. There is no uniform layer of the biofilm covering the mucosa of the maxillary sinuses. Because the biofilm is detected on healthy individuals sinus mucosa, the clinical question if it may become pathogenic is unclear and require an explanation.

It should also be noted that pathogenic organisms, such as Pseudomonas aeruginosa, Haemophilus influenzae, Streptococcus pneumoniae, or Staphylococcus aureus can be found in patients without active symptoms of the disease. Usually, colonization is defined as the presence of bacteria on the mucous membrane, and the lack of the inflammatory response distinguishes it from an infection.

However, the bacteria film in contrast to typical biofilm might be defined by the presence of bacteria, that growth in colonies without inducing the inflammatory response. Thus, the aim of the study was to evaluate the mucosal surfaces of the healthy maxillary sinuses (without any history of recent acute sinus inflammations or chronic inflammation in the past), to identify different forms of bacterial microorganisms which could, under certain conditions, become opportunistic or pathogenic and determine a mucosal surface of the area they occupy.

Scanning electron microscope investigations revealed the presence of bacterial film on the surface of maxillary sinus mucosa in 30 patients. Moreover, microbiological examinations of specimens taken from study participants revealed the presence of various types of aerobic and anaerobic bacteria in 28 cases (93.34%) out of 30 studied samples. All samples had mixed flora. In total, 41 different microorganisms were isolated. The most frequently found microorganism was Streptococcus spp. in over 90% of all samples, while Propionibacterium acnes were present in 29,2% of samples, and Staphylococcus spp. was present in 17% of the samples.

Scanning electron microscopy analysis showed that the mucous layer has a thickness of 200 nm (± 40), which is covered up to 5% of the surface of each sample. The analysis showed the presence of bacteria-like microcolony structures in all analyzed samples.....Each colony consisted of more than 20 single bacterial cells, that had grown in aggregates. These clearly indicate the existence of a bacterial-like microcolony on maxillary sinus mucosa.

thumbnailScanning electron microscopy images of biofilms seen on the mucosal surface of the healthy paranasal sinus mucosa. See spherical structures related to Haemophilus influenzae (Fig B and D). Credit: Morawska-Kochman et al 

Mediterranean Diet is Healthy Eating – A Good Option for Seniors An article was just published in a research journal to discuss the fact that humans - in part due to lifestyles which include less dietary fiber (due to eating fewer varieties and amounts of plants) and due to medical practices (such as frequent use of antibiotics) has resulted in gut "bacterial extinctions". In other words, humans (especially those living an urban industrialized Western lifestyle) have fewer gut bacterial species than those living a more traditional lifestyle, and this loss of bacterial species is linked to various diseases. Humans can increase the number of certain bacterial species, but the loss of some bacterial species is forever. 

The researchers discuss that humans have the "lowest level of gut bacterial diversity"  of any hominid and primate. They stated that the shrinking of the variety of microbial species in the human gut (the gut microbiome) began early in human evolution (as humans started eating more meat), but that it has accelerated dramatically within industrialized societies. And that evidence is accumulating that this gut bacterial "depauperation" - the loss of a variety of bacterial species - may predispose humans to a range of diseases.  Some of it is due to evolution (as humans ate more meat), and some to lifestyle changes. A term is used throughout this paper: depauperate - which means lacking in numbers or variety of species in the gut microbiome (the microbial community or ecosystem).

Other research has also shown that eating a highly processed Western diet results in gut microbial changes that are linked to various diseases (here, here, here) - that is, the microbes being fed are those associated with diseases. Also, certain diets encourage certain microbial species to flourish (here, here).  Bottom line: studies find health benefits from higher levels of dietary fiber - from fruits, vegetables, seeds, nuts, whole grains, and legumes (beans). From Current Opinion In Microbiology:

The shrinking human gut microbiome

Highlights: Humans harbor the lowest levels of gut bacterial diversity of any hominid. Humans in industrialized nations harbor fewer gut bacterial taxa than any primate. Medical practices and lack of dietary fiber may drive gut bacterial extinctions. Depauperate microbiotas may predispose entire human populations to certain diseases.

Mammals harbor complex assemblages of gut bacteria that are deeply integrated with their hosts’ digestive, immune, and neuroendocrine systems. Recent work has revealed that there has been a substantial loss of gut bacterial diversity from humans since the divergence of humans and chimpanzees. This bacterial depauperation began in humanity’s ancient evolutionary past and has accelerated in recent years with the advent of modern lifestyles. Today, humans living in industrialized societies harbor the lowest levels of gut bacterial diversity of any primate for which metagenomic data are available, a condition that may increase risk of infections, autoimmune disorders, and metabolic syndrome. Some missing gut bacteria may remain within under-sampled human populations, whereas others may be globally extinct and unrecoverable.

A typical human harbors on the order of 1013 bacterial cells in the large intestine. This gut microbiota, which can contain over a thousand species, is deeply integrated with virtually every tissue and organ system in the body. Gut bacteria process difficult to digest components of the diet, promote angiogenesis in the intestine, train the immune system, regulate metabolism, and even influence moods and behaviors.

In contrast to hunter–gatherer to agricultural transitions, adoptions of industrial and post-industrial lifestyles have led to massive reductions in bacterial richness within human gut microbiotas. Individuals living in urban centers in the United States harbor fewer gut bacterial species on average than do individuals living more traditional lifestyles in Malawi , Venezuela, Peru, and Papua New Guinea.....Industrialized and traditional lifestyles differ in many respects, confounding the identification of the specific practices that have led to decreases in gut bacterial diversity within industrialized societies. One potential cause is the rise of food processing and the corresponding reductions in the intake of dietary fiber in favor of simple sugars. Recently, studies in model systems have indicated that long-term reductions in dietary fiber can lead to the extirpation of gut bacterial taxa from host lineages. 

Other potential causes of reduced gut bacterial diversity within industrialized human populations include certain modern medical practices. For example, longitudinal studies in humans have shown that levels of gut bacterial diversity decrease drastically after antibiotic use. Although bacterial richness may recover after treatment is completed, the timeline and extent of the restoration is highly subject-dependent. The consequences of antibiotic use on gut bacterial diversity may be most severe when treatment is administered during the early years of life, before the adult microbiota has fully formed .

 Sooo.....what is going on here? Why are very early onset (5 years and younger) pediatric inflammatory bowel diseases (IBD) in children increasing so rapidly in Canada? Inflammatory bowel diseases include Crohn's disease and ulcerative colitis. In the last two decades there has been an increase of 7.2% per year- to the point that it is among the highest in the world (9.68 per 100,000 children). Only Norway has a similar incidence (10.6 per 100,000 children under the age of 16 years), with Sweden having an incidence  of 12.8 per 100,000. Research studies find that the microbial communities are out of whack (dysbiosis) in IBD.

But why is the rate of IBD increasing in these northern countries? The researchers mention that rates are also increasing in the northern states in the US. Currently the reasons for the higher rates in Canadian and northern European children are not known. Some environmental factors such as lack of sunlight exposure and high rates of vitamin D deficiency, antibiotic use, and diet have been hypothesized as contributing to the pediatric IBD increase. Stay tuned... From Science Daily:

Inflammatory bowel diseases on the rise in very young Canadian children

Canada has amongst the highest rates of pediatric inflammatory bowel disease (IBD) in the world, and the number of children under five years old being diagnosed increased by 7.2 per cent every year between 1999 to 2010, according to a new study by researchers at the Institute for Clinical Evaluative Sciences (ICES), Children's Hospital of Eastern Ontario (CHEO) Research Institute and the Canadian Gastro-Intestinal Epidemiology Consortium.

"The number of children under five being diagnosed with IBD is alarming because it was almost unheard of 20 years ago, and it is now much more common," says Dr. Eric Benchimol, lead author of the study, scientist at ICES and a pediatric gastroenterologist at the Children's Hospital of Eastern Ontario Inflammatory Bowel Disease Centre, in Ottawa. IBD primarily includes Crohn's disease and ulcerative colitis, which are lifelong conditions that cause inflammation in the digestive tract, leading to chronic diarrhea, blood in the stool, abdominal pains and weight loss.

Researchers say a change in the bacterial composition of the gut may be to blame for the increase in IBD cases but they don't know what is causing the change. They suspect a combination of environmental risk factors could be to blame, such as early life exposure to antibiotics, diet, or lower levels of Vitamin D in Canadians.

The researchers found that the incidence of IBD has stabilized in children over the age of five, but in children under five it continues to rise rapidly. The researchers estimate that approximately 600 to 650 children are diagnosed with IBD every year in Canada. [Original study.]

 More research supports that being exposed to pets during pregnancy or in the first months of life changes the gut bacteria, and in a way that is thought to be beneficial. The researchers found that infants exposed to pets prenatally or after birth (or both) had higher levels of two microbes that are associated with a lower risk of allergies and obesity. The two microbes are Ruminococcus and Oscillospira, but in case you're wondering - they are not (yet) available in probiotics.

And these differences in gut bacteria occurred no matter how the infants were born or fed (C-section, vaginal, breastfed, formula fed), or whether they received antibiotics at birth or not  - it was the pet exposure that was most important. The evidence is building that if one wants to avoid allergies in children - to have them exposed to furry pets in the first  year of life, and according to this study - perhaps before birth also. From Science Daily:

Pet exposure may reduce allergy and obesity

A new University of Alberta study showed that babies from families with pets -- 70 per cent of which were dogs -- showed higher levels of two types of microbes associated with lower risks of allergic disease and obesity.

"There's definitely a critical window of time when gut immunity and microbes co-develop, and when disruptions to the process result in changes to gut immunity," said Anita Kozyrskyj, a U of A pediatric epidemiologist....The latest findings from Kozyrskyj and her team's work on fecal samples collected from infants registered in the Canadian Healthy Infant Longitudinal Development study build on two decades of research that show children who grow up with dogs have lower rates of asthma

Her team of 12, including study co-author and U of A post-doctoral fellow Hein Min Tun, take the science one step closer to understanding the connection by identifying that exposure to pets in the womb or up to three months after birth increases the abundance of two bacteria, Ruminococcus and Oscillospira, which have been linked with reduced childhood allergies and obesity, respectively.

"The abundance of these two bacteria were increased twofold when there was a pet in the house," said Kozyrskyj, adding that the pet exposure was shown to affect the gut microbiome indirectly -- from dog to mother to unborn baby -- during pregnancy as well as during the first three months of the baby's life. In other words, even if the dog had been given away for adoption just before the woman gave birth, the healthy microbiome exchange could still take place.

The study also showed that the immunity-boosting exchange occurred even in three birth scenarios known for reducing immunity, as shown in Kozyrskyj's previous work: C-section versus vaginal delivery, antibiotics during birth and lack of breastfeeding. What's more, Kozyrskyj's study suggested that the presence of pets in the house reduced the likelihood of the transmission of vaginal GBS (group B Strep) during birth, which causes pneumonia in newborns and is prevented by giving mothers antibiotics during delivery. [Original study.]


20131201_101300 Last week a person told an amazing story in the comments section after a post on this site. After suffering from a "constant runny nose and a bad smell" in the nose for 2 years - which was diagnosed as "fungi and staph" in the sinuses - the person started doing "kimchi treatments" (as discussed in the Sinusitis Treatment Summary page). After 2 weeks a fungal ball was loosened, which came out of the sinuses and into the mouth, and was then spit out. About an inch in size - a smelly, grey/green, round fungal ball. Wow. Which leads to the question: Are any of the microbes in live kimchi anti-fungal?

Kimchi is an amazing live fermented food, typically made with cabbage and other vegetables and a variety of seasonings. Kimchi is the national dish of Korea and so there is tremendous interest in Korea in studying kimchi to learn about the many different microbial species in kimchi, including how they change over the course of fermentation. It turns out that kimchi contains many species of bacteria, including various species of Lactobacillus - which are considered beneficial. Of course one of the species found in kimchi over the course of fermentation is Lactobacillus sakei - the bacteria that successfully treats sinusitis, and which I have written about extensively. L. sakei predominates over pathogenic bacteria (antibacterial) - which is why it is also used as a sausage starter culture (to kill off bacteria such as Listeria). One study found that the garlic, ginger, and leek used in making kimchi were the sources of L. sakei bacteria found in fermented kimchi.

Studies show that a number of the Lactobacillus species found in kimchi are antifungal against a number of different kinds of fungi.  Some of these antifungal bacteria are: Lactobacillus plantarum, L. cruvatus, L. lactis, L. casei, L. pentosus, L. acidophilus, and L. sakei (here, here.

A study from 2005 found that some Lactobacillus species found in kimchi are predominant over a fungi known to cause health problems in humans - Aspergillus fumigatus, a mold (fungi) which is the most common cause of Aspergillus infections. Aspergillus (of which there are many species) is very common both indoors and outdoors (on plants, soil, rotting plants, household dust, etc.), so people typically breathe in these fungal spores daily and without any negative effects. However, sometimes Aspergillus can cause allergic reactions, infections in the lungs and sinuses (including fungal balls), and other infections. (more information at CDC site). The study found that 5 bacterial species in kimchi were also antifungal against other species of fungi (Aspergillus flavus, Fusarium moniliforme, Penicillium commune, and Rhizopus oryzae). The 5 bacterial species in kimchi that they found to be antifungal were: Lactobacillus cruvatus, L. lactis subsp. lactis, L. casei, L. pentosus, and L. sakei.

Just keep in mind that fungi are everywhere around us, and even part of the microbes that live in and on us - this is our mycobiome (here and here). We also breathe in a variety of fungi (mold spores) every day. In healthy individuals (even babies) all the microbes (bacteria, viruses, fungi, etc) live in balanced microbial communities, but the communities can become "out of whack" (dysbiosis) for various reasons, and microbes that formerly co-existed peacefully can multiply and become problematic.  If the populations get too unbalanced (e.g., antibiotics can kill off bacteria, and then an increase in fungi populations take their place) then ordinarily non-harmful fungi can become pathogenic. Or other pathogenic microbes can enter the community (e.g., through infection), and the person becomes ill.

IN SUMMARY: Kimchi has beneficial bacteria in it that are effective not just against bacteria (antibacterial), but also against some kinds of fungi (antifungal). One 2016 review study went so far as to say: "Kimchi possesses anti-inflammatory, antibacterial, antioxidant, anticancer, antiobesity, probiotic properties, cholesterol reduction, and antiaging properties." Experiences of my family and people writing suggest that the L. sakei in kimchi (and other products) is also antibiofilm. Hopefully, there will be some research on this in the future. But in the meantime, please keep writing to me about fungal complications of sinusitis, and especially if kimchi, L. sakei products, or other probiotics helped.

Image result for maple tree allergies Could this be true? Probiotics for seasonal allergies? A study by Univ. of Florida researchers reported that taking a combination probiotic of Lactobacillus gasseri, Bifidobacterium bifidum, and Bifidobacterium longum (sold as Kyo-Dophilus) for 8 weeks during spring allergy season resulted in an improvement in seasonal allergy symptoms. It must be noted that the people participating had mild seasonal allergies, not severe allergies. While they reported overall allergy symptom improvement, there was no significant improvement with eye symptoms. Too bad, because for those suffering from itchy eyes, it is a symptom that causes anguish during allergy season.

All participants had their stool (fecal) samples tested (with modern genetic sequencing) and it was found that the group taking the probiotic supplements had a beneficial shift in their overall microorganisms in the gut - with some bacteria such as Escherichia coli decreasing and the very beneficial and anti-inflammatory bacteria Faecalibacterium prausnitzii increasing. (See posts here and here on F. prausnitzii.) What was really good about the study was that it was a "double-blind, randomized clinical trial", meaning that people were randomly  assigned to the probiotic treatment or placebo group, and no one knew who was getting a placebo or the probiotic until the end of the study. The researchers say that why the probiotics improved allergy symptoms is s till not clear, but they have some theories. From Science Daily:

Allergies? Probiotic combination may curb your symptoms, new study finds

As we head into allergy season, you may feel less likely to grab a hanky and sneeze. That's because new University of Florida research shows a probiotic combination might help reduce hay fever symptoms, if it's taken during allergy season. Many published studies have shown a probiotic's ability to regulate the body's immune response to allergies, but not all of the probiotics show a benefit, UF researchers say. Scientists already know that the probiotic combination of lactobacilli and bifidobacteria, sold as Kyo-Dophilus in stores, helps maintain digestive health and parts of the immune system. They suspect that probiotics might work by increasing the human body's percentage of regulatory T-cells, which in turn might increase tolerance to hay fever symptoms.

UF researchers wanted to know if the components in this combination probiotic would help alleviate allergy symptoms. To do that, they enrolled 173 healthy adults who said they suffered seasonal allergies and randomly split them into two groups: Some took the combination probiotic; others took a placebo. Each week during the eight-week experiment, participants responded to an online survey to convey their discomfort level. Scientists also analyzed DNA from participants' stool samples to determine how their bacteria changed, because probiotics aim to deliver good bacteria to the human's intestinal system.

Participants who took the probiotic reported improvements in quality of life, compared to those taking the placebo, the study showed. For example, participants suffered fewer allergy-related nose symptoms, which meant that they were less troubled during daily activities. Researchers note that this study did not include severe allergy sufferers. But the combination of probiotics showed clinical benefit for those with more mild seasonal allergies, Langkamp-Henken said. [Original study.]

  It's now 4 years being free of chronic sinusitis and off all antibiotics! Four amazing years since I (and then the rest of my family) started using easy do-it-yourself sinusitis treatments containing the probiotic (beneficial bacteria) Lactobacillus sakei. My sinuses feel great! And yes, it still feels miraculous.

After reading the original ground-breaking research on sinusitis done by Abreu et al (2012), it led to finding and trying L. sakei as a sinusitis treatment. Of course, there is an entire community of microbes (bacteria, fungi, viruses) that live in healthy sinuses - the sinus microbiome - but L. sakei seems to be a key one for sinus health.

I just updated the post The One Probiotic That Treats Sinusitis (originally posted January 2015) using my family's experiences (lots of self-experimentation!) and all the information that people have sent me. The post has a list of brands and products with L. sakei, treatment results, as well as information about some other promising probiotics (beneficial bacteria). Thank you so much!

Thank you all who have written to me  - whether publicly or privately. Please keep writing and tell me what has worked or hasn't worked for you as a sinusitis treatment. If you find another bacteria or microbe or product that works for you - please let me know. It all adds to the sinusitis treatment knowledge base. I will keep posting updates. 

(NOTE: I wrote our background story - Sinusitis Treatment Story back in December 2013, and there is also a  Sinusitis Treatment Summary page with the various treatment methods quickly discussed. One can also click on SINUSITIS under CATEGORIES to see more posts about what is going on in the world of sinusitis research.)

Image result for Acinetobacter baumannii Many posts on this blog are about beneficial microbes, and the many species of microbes (bacteria, fungi, viruses) living within and on us. But there are also bacteria in the world that pose a serious threat to human health, and the list of these are growing due to antibiotic resistance. This week the World Health Organization (WHO) officials came out with a list of a dozen antibiotic-resistant "priority pathogens" that pose the greatest threats to human health. These are bacteria resistant to multiple antibiotics - thus superbugs.

Antibiotic resistance is increasing due to misuse of antibiotics (or antimicrobials), and this is occurring throughout the world (post with video of how superbugs evolve). This is because bacteria are constantly evolving against the antibiotics they're exposed to. We may reach a point where simple cuts or infections could lead to death because no antibiotics will work. The World Health Organization said in a 2014 report that: "The problem is so serious that it threatens the achievements of modern medicine. A post-antibiotic era—in which common infections and minor injuries can kill—far from being an apocalyptic fantasy, is instead a very real possibility for the twenty-first century."

Part of the problem is that farmers are still giving antibiotics (antimicrobials) to farm animals unnecessarily, typically as "growth promoters" or to try to prevent disease. Currently about 80% of all antibiotics used in the US are given to livestock animals (of which nearly 70 percent of those used are considered “medically important” for humans).

New antibiotic development is not keeping pace with the emergence of new antibiotic resistant bacteria. According to the CDC: "Each year in the United States, at least 2 million people become infected with bacteria that are resistant to antibiotics and at least 23,000 people die each year as a direct result of these infections."

According to WHO officials "The bacteria on the list are responsible for severe infections and high mortality rates mostly in hospitalized patients, transplant recipients, those receiving chemotherapy or patients in intensive care units." They have also been seen in our hospitalized and returning military service people. The WHO list is meant to steer public and private research dollars toward developing new antibiotics for these particular families of bacteria. Pharmaceutical companies currently lack financial incentives to develop new drugs aimed at these superbugs. Currently too few new antibiotics are under development. From World Health Organization:

WHO publishes list of bacteria for which new antibiotics are urgently needed

WHO today published its first ever list of antibiotic-resistant "priority pathogens" – a catalogue of 12 families of bacteria that pose the greatest threat to human health. The list was drawn up in a bid to guide and promote research and development (R&D) of new antibiotics, as part of WHO’s efforts to address growing global resistance to antimicrobial medicines. The list highlights in particular the threat of gram-negative bacteria that are resistant to multiple antibiotics. These bacteria have built-in abilities to find new ways to resist treatment and can pass along genetic material that allows other bacteria to become drug-resistant as well.....The WHO list is divided into three categories according to the urgency of need for new antibiotics: critical, high and medium priority.

The most critical group of all includes multidrug resistant bacteria that pose a particular threat in hospitals, nursing homes, and among patients whose care requires devices such as ventilators and blood catheters. They include Acinetobacter, Pseudomonas and various Enterobacteriaceae (including Klebsiella, E. coli, Serratia, and Proteus). They can cause severe and often deadly infections such as bloodstream infections and pneumonia. These bacteria have become resistant to a large number of antibiotics, including carbapenems and third generation cephalosporins – the best available antibiotics for treating multi-drug resistant bacteria. The second and third tiers in the list – the high and medium priority categories – contain other increasingly drug-resistant bacteria that cause more common diseases such as gonorrhoea and food poisoning caused by salmonella.

WHO priority pathogens list for R&D of new antibiotics: Priority 1: CRITICALAcinetobacter baumannii, carbapenem-resistant, Pseudomonas aeruginosa, carbapenem resistant, Enterobacteriaceae, carbapenem-resistant, ESBL-producing. Priority 2: HIGHEnterococcus faecium, vancomycin-resistant, Staphylococcus aureus, methicillin-resistant, vancomycin-intermediate and resistant, Helicobacter pylori, clarithromycin-resistant, Campylobacter spp., fluoroquinolone-resistant, Salmonellae, fluoroquinolone-resistant, Neisseria gonorrhoeae, cephalosporin-resistant, fluoroquinolone-resistant. Priority 3: MEDIUM Streptococcus pneumoniae, penicillin-non-susceptible, Haemophilus influenzae, ampicillin-resistant, Shigella spp., fluoroquinolone-resistant.

Image result for Acinetobacter baumannii Acinetobacter baumannii  Credit: Centers for Disease Control and Prevention (CDC)