Skip to content

Another reason to breastfeed infants. From Medical Xpress:

Breastfeeding promotes the growth of beneficial bacteria in the gut

A number of studies have shown that breastfed babies grow slightly slower and are slightly slimmer than children who are fed with infant formula. Children who are breastfed also have a slightly lower incidence of obesity, allergies, diabetes and inflammatory bowel disease later in life. According to a new study by the National Food Institute and the University of Copenhagen this may be due to the fact that breastfeeding promotes the development of beneficial bacteria in the baby's gut.

"We have become increasingly aware of how crucially important a healthy gut microbial population is for a well-functioning immune system. Babies are born without bacteria in the gut, and so it is interesting to identify the influence dietary factors have on gut microbiota development in children's first three years of life," research manager at the National Food Institute Tine Rask Licht says.

The study shows that there are significant changes in the intestinal bacterial composition from nine to 18 months following cessation of breastfeeding and other types of food being introduced. However, a child's gut microbiota continues to evolve right up to the age of three, as it becomes increasingly complex and also more stable.

"The results help to support the assumption that the gut microbiota is not - as previously thought - stable from the moment a child is a year old. According to our study important changes continue to occur right up to the age of three.

More information: The study has been described in a scientific article in Applied and Environmental Microbiology: Establishment of intestinal microbiota during early life: A longitudinal, explorative study of a large cohort of Danish infants:www.ncbi.nlm.nih.gov/pubmed/24584251

Some information about toothbrushes and bacteria. From Science Daily:

Clean before you clean: What's on your toothbrush just might surprise you

Do you know Staphylococci, coliforms, pseudomonads, yeasts, intestinal bacteria and -- yes -- even fecal germs may be on your toothbrush?

Appropriate toothbrush storage and care are important to achieving personal oral hygiene and optimally effective plaque removal, says Maria L. Geisinger, DDS, assistant professor of periodontology in the School of Dentistry at the University of Alabama at Birmingham.

"The oral cavity is home to hundreds of different types of microorganisms, which can be transferred to a toothbrush during use," Geisinger said. "Furthermore, most toothbrushes are stored in bathrooms, which exposes them to gastrointestinal microorganisms that may be transferred via a fecal-oral route. The number of microorganisms can vary wildly from undetectable to 1 million colony-forming units (CFUs). Proper handling and care of your toothbrush is important to your overall health."

What constitutes proper care and handling? Geisinger answers several questions that may help better protect families from toothbrush germs.

Q. Can bacteria from your toilet really reach your toothbrush?

A. "The short answer is 'yes.' Enteric bacteria, which mostly occur in the intestines, can transfer to toothbrushes and thus into your mouth. This may occur through inadequate hand-washing or due to microscopic droplets released from the toilet during flushing. The topic of dirty toothbrushes was a recent subject of the popular Discovery Channel show "Mythbusters," when 24 toothbrushes were tested, and all of them demonstrated enteric microorganisms -- even those that had not been inside of a bathroom. In fact, toothbrushes may be contaminated with bacteria right out of the box, as they are not required to be packaged in a sterile manner."

Q. What is the proper way to clean your toothbrush to help remove germs?

A. "You should thoroughly rinse toothbrushes with potable tap water after brushing to remove any remaining toothpaste and debris. Additionally, soaking toothbrushes in an antibacterial mouth rinse has been shown to decrease the level of bacteria that grow on toothbrushes."

Q. How should you to store your toothbrush to avoid germ and bacteria buildup?

A. "The American Dental Association recommends that you not store your toothbrush in a closed container or routinely cover your toothbrush, as a damp environment is more conducive to the growth of microorganisms. Also, storing toothbrushes in an upright position and allowing them to air dry until the next use is recommended, if possible. If more than one brush is stored in an area, keeping the toothbrushes separate can aid in preventing cross-contamination."

Since myopia increased 66% between the early 1970s to early 2000s in the United States, it is thought that there are environmental factors at play, namely higher levels of education, all our close-up activities with new technology (reading, computers, tablets, etc.) straining our eyes, and spending too much time indoors. From The Atlantic:

Nearsightedness and the Indoor Life

Over the past 15 years, the world has witnessed an explosion of cases of myopia, or nearsightedness. A quarter of the world's population, or 1.6 billion people, now suffer from some form of myopia, according to the Myopia Institute. If unchecked, those numbers are estimated to reach one-third of the world's population by 2020. 

The 2009 study is hardly the first to suggest that an increase in years of formal education and access to technology across society may account for higher myopia rates in recent years. Ophthalmologists and optometrists have cautioned that close-up activities like reading and using computers, tablets, and smartphones interfere with normal blinking and put a strain on the eyes. When abused, they can lead to double vision, myopia, and serious conditions such as retinal detachment and vision loss. The overuse of handheld electronics such as iPads and tablets by young children is especially worrisome, since their eyes are still developing and are more likely to be affected, according to researchers.

Kathryn Rose, a researcher of visual disorders at the University of Sydney's college of health sciences, recently concluded  that spending too much time indoors also has a huge impact on eyesight deterioration. Rose said in a CNN interview that she was not sure how time spent using digital media relates to myopia progress, but that outdoor light has been shown to have a positive effect on vision. Studies from the U.S., Singapore, and China confirm a link between the time spent outdoors and the prevention of myopia, Rose said. However, both the level of light and the duration of exposure to outdoor light must reach a certain threshold to have a preventive effect, according to one of her studies. Spending at least 10 to 14 hours outside per week may prevent the early onset of myopia, she concluded.

Dr. Maria Liu, head of the Myopia Control Clinic that opened last year, explained that prevention and treatment success depend on early detection. Nearsighted children under 10 could benefit the most from intervention. This age group is also the most susceptible to eye damage from prolonged use of visual media, according to the myopia specialist."The eyeballs are very adaptive while they are developing," Liu told me. "If we impose a lot of near work on the eyes as they are developing, the eyes will interpret nearsightedness as being the normal state."

She explained the rise in myopia prevalence is likely caused by a shift in lifestyle from spending time outdoors to an indoor-oriented existence. Electronic devices play a major role in this shift, especially with young children being introduced to technology at an earlier stage in their life, and using handheld devices that require a smaller working distance than that for a physical book or television.

The Myopia Control Clinic specialists use corrective lenses (novel contact lenses) to slow down myopia in children. If applied early enough, corrective lenses have proven effective in treating the disorder. In cases with very high myopia progression, however, scleral reinforcement surgery is used to reduce or stop further damage caused by high myopia, which often can be degenerative. Atropine is the only drug that so far has proven effective in slowing myopia progression. The drug is used as a second line of treatment after all optical treatments fail.

Although modern lifestyle makes it harder to fight the disorder, there is something parents can do to prevent its early onset."Whether it is because hormonal levels are different outdoors, or because the light intensity is stronger, or because we do less close-up work, it has been shown consistently that outdoor activity is very protective and tends to slow the rate of progression."

Taking frequent 10-minute breaks from near-work and looking in the distance is also recommended, including for young adults who spend a lot of time working on computers or laptops and may suffer from accommodating spasms that cause blurry distance vision and dry eyes. Some specialists recommend limiting time in front of computers, TVs, and handheld devices to 1.5 hours a day, especially for young children.

This study was done on mice, but it would be great if it also holds true for human eyes. Another benefit from daily drinking of coffee! From Science Daily:

A cup of coffee a day may keep retinal damage away, study shows

Aside from java's energy jolt, food scientists say you may reap another health benefit from a daily cup of joe: prevention of deteriorating eyesight and possible blindness from retinal degeneration due to glaucoma, aging and diabetes.

Raw coffee is, on average, just 1 percent caffeine, but it contains 7 to 9 percent chlorogenic acid (CLA), a strong antioxidant that prevents retinal degeneration in mice, according to a Cornell study published in theJournal of Agricultural and Food Chemistry (December 2013).

The retina is a thin tissue layer on the inside, back wall of the eye with millions of light-sensitive cells and other nerve cells that receive and organize visual information. It is also one of the most metabolically active tissues, demanding high levels of oxygen and making it prone to oxidative stress. The lack of oxygen and production of free radicals leads to tissue damage and loss of sight.

In the study, mice eyes were treated with nitric oxide, which creates oxidative stress and free radicals, leading to retinal degeneration, but mice pretreated with CLA developed no retinal damage.

Previous studies have shown that coffee also cuts the risk of such chronic diseases as Parkinson's, prostate cancer, diabetes, Alzheimer's and age-related cognitive declines.

Excellent reason to enjoy coffee every day. From Science Daily:

Increasing consumption of coffee associated with reduced risk of type 2 diabetes, study finds

New research published in Diabetologia (the journal of the European Association for the Study of Diabetes) shows that increasing coffee consumption by on average one and half cups per day (approx 360ml) over a four-year period reduces the risk of type 2 diabetes by 11%. 

The authors examined the associations between 4-year changes in coffee and tea consumption and risk of type 2 diabetes in the subsequent 4 years.

The authors used observational data from three large prospective, US-based studies in their analysis: the Nurses' Health Study (NHS) (female nurses aged 30-55 years, 1986-2006), the NHS II (younger female nurses aged 25-42 years 1991-2007), and the Health Professionals Follow-up Study (HPFS) (male professionals 40-75 years, 1986-2006). The final analysis included 48,464 women in NHS, 47,510 women in the NHS II, and 27,759 men in HPFS.

The authors documented 7,269 incident type 2 diabetes cases, and found that participants who increased their coffee consumption by more than 1 cup/day (median change=1.69 cups/day) over a 4-year period had a 11% lower risk of type 2 diabetes in the subsequent 4-years compared to those who made no changes in consumption. Participants who decreased their coffee intake by 1 cup a day or more (median change=-2 cups/day) had a 17% higher risk for type 2 diabetes. Changes in tea consumption were not associated with type 2 diabetes risk.

Those with highest coffee consumption and who maintained that consumption -- referred to as "high-stable consumers" since they consumed 3 cups or more per day -- had the lowest risk of type 2 diabetes, 37% lower than the "low-stable consumers" who consumed 1 cup or less per day.

While baseline decaffeinated coffee consumption was associated with a lower type 2 diabetes risk, the changes in decaffeinated coffee consumption did not change this risk. 

Flatulence is good, and up to 18 a day is totally normal! From NPR:

Got Gas? It Could Mean You've Got Healthy Gut Microbes

We know that air often comes after eating nutrient-packed vegetables, such as cabbage, kale and broccoli. And researchers have found that fiber-rich foods, like beans and lentils, boost the levels of beneficial gut bacteria after only a few days, as we reported in December.

So all this got us wondering: Could passing gas, in some instances, be a sign that our gut microbes are busy keeping us healthyAbsolutely, says Purna Kashyap, a gastroenterologist at the Mayo Clinic in Rochester, Minn. "Eating foods that cause gas is the only way for the microbes in the gut to get nutrients," he says. "If we didn't feed them carbohydrates, it would be harder for them to live in our gut."

And we need to keep these colon-dwelling critters content, Kashyap says. When they gobble up food — and create gas — they also make molecules that boost the immune system, protect the lining of the intestine and prevent infections.

"A healthy individual can have up to 18 flatulences per day and be perfectly normal," he adds.

Gas gets into the digestive tract primarily through  two routes: Swallowing air (which we all do when we eat and chew gum) and your microbiome. That's the collection of organisms in the GI tract that scientists and doctors are currently all fired up about. (Check our colleague Rob Stein's recent series on it.) That microbiome includes hundreds of different bacteria. But there are also organisms from another kingdom shacking up with them: the archaea.

All these microbes are gas-making fools. They eat up unused food in your large intestine, like fiber and other carbohydrates we don't digest, and churn out a bunch of gases as waste. But that's not all they make. They also produce a slew of molecules (called short chain fatty acids) that may promote the growth of other beneficial bacteria and archaea.

And the more fiber you feed these friendly inhabitants, the more types of species appear, studies have found. "Undigested carbohydrates allow the whole ecosystem to thrive and flourish," Kashyap says. Most gas made by the microbiome is odorless. It's simply carbon dioxide, hydrogen or methane. But sometimes a little sulfur slips in there."That's when it gets smelly," Kashyap says.

But here's the hitch: Many of the smelly sulfur compounds in vegetables have healthful properties. Take for instance, the broccoli, mustard and cabbage family. These Brassica vegetables are packed with a sulfur compound, called sulforaphane, that is strongly associated with a reduced risk of cancer. Another possible benefit of a little smelly gas? It may reduce the total volume of air in the gut, Kashyap says. 

This study suggests another reason to avoid Triclosan. From Science Daily:

In lab tests, the antimicrobial ingredient triclosan spurs growth of breast cancer cells

Some manufacturers are turning away from using triclosan as an antimicrobial ingredient in soaps, toothpastes and other products over health concerns. And now scientists are reporting new evidence that appears to support these worries. Their study, published in the ACS journal Chemical Research in Toxicology, found that triclosan, as well as another commercial substance called octylphenol, promoted the growth of human breast cancer cells in lab dishes and breast cancer tumors in mice.

Kyung-Chul Choi and colleagues note that hormonal imbalances seem to play a role in the development of breast cancer. Given that link, researchers are investigating whether endocrine-disrupting chemicals (EDCs), which are compounds that act like hormones, might spur cancer cell growth. EDCs have become ubiquitous in products, in the environment and even in our bodies. Research has found that two EDCs -- triclosan, an antimicrobial ingredient in many products, including soaps, cosmetics and cutting boards; and octylphenol, which is in some paints, pesticides and plastics -- have accumulated in the environment. Additionally, triclosan is reportedly in the urine of an estimated 75 percent of Americans. Choi's team wanted to see what effect the two compounds have on breast cancer cells.

In tests on human breast cancer cells and in special immunodeficient mice with tissue grafts, the scientists found that both agents interfered with genes involved with breast cancer cell growth, resulting in more cancer cells. Mice that were exposed to the two compounds had larger and denser breast cancer tumors than the control group. "Although the doses of EDCs were somewhat high, we did this to simulate their effects of daily exposure, as well as body accumulation due to long-term exposure, simultaneously in animal experiments," said Choi. "Thus, exposure to EDCs may significantly increase the risk of breast cancer development and adversely affect human health," the researchers state in the paper.

Excerpts from a very interesting NPR interview with Dr. Martin Blaser and his views on the human microbiome. The big take-away: our modern life-style is not good for the gut microbiome. His recently published book is Missing Microbes: How the Overuse of Antibiotics is Fueling Our Modern Plagues.

From NPR News: Modern Medicine May Not Be Doing Your Microbiome Any Favors

There are lots of theories about why food allergies, asthma, celiac disease and intestinal disorders like Crohn's disease have been on the rise. Dr. Martin Blaser speculates that it may be connected to the overuse of antibiotics, which has resulted in killing off strains of bacteria that typically live in the gut.

Blaser is an expert on the human microbiome, which is the collection of bacteria, viruses, fungi and other microbes that live in and on the body. In fact, up to 90 percent of all the cells in the human body aren't human at all — they're micro-organisms. Blaser is the director of NYU's Human Microbiome Program and a former chairman of medicine there. His new book is called Missing Microbes: How the Overuse of Antibiotics Is Fueling Our Modern Plagues.

"Since World War II, we've seen big rises in a number of diseases: asthma, allergies, food allergies, wheat allergy, juvenile diabetes, obesity. ... These are all diseases that have gone up dramatically in the last 50 or 70 years. One of the questions is: Why are they going up? Are they going up for 10 different reasons, or perhaps there is one reason that is fueling all of them."

"My theory is that the one reason is the changing microbiome; that we evolved a certain stable situation with our microbiome and with the modern advances of modern life, including modern medical practices, we have been disrupting the microbiome. And there's evidence for that, especially early in life, and it's changing how our children develop."

"There's a choreography; there's a normal developmental cycle of the microbiome from birth over the first few years of life, especially the first three years, [that] appear[s] to be the most important. And that's how nature has, how we have, evolved together so that we can maximize health and create a new generation, which is nature's great purpose. And because of modern practices, we have disrupted that. And then the question is: Does that have consequence[s]?"

"As far as we know, when the baby is inside the womb it is apparently sterile. ... The big moment of truth is when the membranes rupture, the water breaks, and the baby starts coming out. And that's where they first get exposed to the bacteria of the world, and the first bacteria they're exposed to is their mother's bacteria in the birth canal. So as labor proceeds, the babies are in contact with the microbes lining their mother's vagina and, as they're going out, they're covered by these bacteria. They swallow the bacteria; it's on their skin. ..."

"That's their initial exposure to the world of bacteria. That's how mammals have been doing it for the last 150 million years, whether they're dolphins or elephants or humans. ... And we know a little about what those bacteria are. The most common bacteria are lactobacillus and there's evidence that over the course of pregnancy the microbiome in the vagina changes, just as many other parts of the body are changing. The microbiome is changing in its composition in terms of maximizing lactobacilli, and these are bacteria that eat lactose, which is the main component of milk. So the baby's mouth is filled with lactobacilli. The first thing that happens is they go up against their mom's breast and they inoculate the nipple with lactobacilli and now milk and lactobacilli go into the new baby and that's the foundation for their microbiome and that's how they start their life. ..."

"You could project that if they didn't acquire these organisms or they didn't acquire them normally or at the normal time, then the foundations might be a little shaky."

"Shortly after birth, they compared the microbiomes in the babies that came out. The babies that were born vaginally, their microbiome, not surprisingly, looked like the mom's vagina everywhere in the body — in their GI tract, on their skin, in their mouth. But the babies born by C-section, their microbiome looked like skin and it didn't even necessarily look like the mom's skin, maybe it was somebody else in the operating room. So it's clear that the microbiome is different immediately depending on the kind of birth."

"What I can tell you is that our immune system is quite complex. There are many kinds of immune cells. There are cells that strongly recognize foreign substances, there are ones that try to damp [the immune system] and down-regulate it. There's what we call innate immunity, which is the immunity we're all born with, and then there's adaptive immunity — the immunity that develops when we experience different kinds of exposures. So it's very complex."

"There are many different probiotics.  I think I can say three things: The first is that they're almost completely unregulated; second is that they seem to be generally safe; and third is that they're mostly untested. ... I'm actually a big believer in probiotics; I think that's going to be part of the future of medicine, that we're going to understand the science of the microbiome well enough so that we can look at a sample from a child and say this child is lacking such-and-such an organism and now we're going to take it off the shelf and we're going to give it back to that child. ... "

An argument for the need for human exposure to the microbes in rural environments. However, the role of diesel exhaust and other urban air pollutants is not discussed here (for example, diesel exhaust is linked to asthma). From Science Daily:

Rural microbes could boost city dwellers' health, study finds

The greater prevalence of asthma, allergies and other chronic inflammatory disorders among people of lower socioeconomic status might be due in part to their reduced exposure to the microbes that thrive in rural environments, according to a new scientific paper co-authored by a University of Colorado Boulder researcher.

The article, published in the journal Clinical & Experimental Immunology, argues that people living in urban centers who have less access to green spaces may be more apt to have chronic inflammation, a condition caused by immune system dysfunction.

When our immune systems are working properly, they trigger inflammation to fight off dangerous infections, but the inflammation disappears when the infection is gone. However, a breakdown in immune system function can cause a low level of inflammation to persist indefinitely. Such chronic inflammation can cause a host of health disorders.

Some scientists have hypothesized that the increase of chronic inflammation in wealthier Western countries is connected to lifestyles that have essentially become too clean. The so-called "hygiene hypothesis" is based on the notion that some microbes and infections interact with the immune system to suppress inflammation and that eliminating exposure to those things could compromise your health.

The authors agree that microbes and some types of infections are important because they can keep the immune system from triggering inflammation when it's not necessary, as happens with asthma attacks and allergic reactions.

But they say the infections that were historically important to immune system development have largely been eliminated in developed countries. The modern diseases we pick up from school, work and other crowded areas today do not actually lead to lower instances of inflammatory disorders.

During our evolutionary history, the human immune system was exposed to microbes and infections in three important ways: commensal microbes were passed to infants from their mothers and other family members; people came into contact with nonpathogenic microbes in the environment; and people lived with chronic infections, such as helminths, which are parasitic worms found in the gut and blood.

In order for those "old infections" to be tolerated in the body for long periods of time, they evolved a mechanism to keep the human immune system from triggering inflammation. Similarly, environmental bacteria, which were abundant and harmless, were tolerated by the immune system. According to Rook, a professor at UCL, "Helminthic parasites need to be tolerated by the immune system because, although not always harmless, once they are established in the host efforts by the immune system to eliminate them are futile, and merely cause tissue damage."

In contrast, relatively modern "crowd infections," such as measles or chicken pox, cause an inflammatory response. The result is that either the sick person dies or the infection is wiped out by the inflammation and the person becomes immune from having the same infection again in the future.

Collectively, the authors refer to the microbes and old infections that had a beneficial impact on the function of our immune systems as "old friends." Exposure to old friends plays an important role in guarding against inflammatory disorders, the authors said. Because the "old infections" are largely absent from the developed world, exposure to environmental microbes -- such as those found in rural environments, like farms and green spaces -- has likely become even more important.

The authors say this would explain why low-income urban residents -- who cannot easily afford to leave the city for rural vacations -- are more likely to suffer from inflammatory disorders. The problem is made worse because people who live in densely populated areas also are more likely to contract crowd infections, which cause more inflammation.

Good news for those who enjoy drinking a little wine. From Medical Xpress:

A little wine might help kidneys stay healthy

An occasional glass of wine might help keep your kidneys healthy, new research suggests. And for those who already have kidney disease, which puts one at higher risk for cardiovascular problems, moderate wine drinking might help the heart. the researchers added.

"Those [with healthy kidneys] who drank less than one glass of wine a day had a 37 percent lower risk of having chronic kidney disease than those who drank no wine," said study author Dr. Tapan Mehta, a renal fellow at the University of Colorado Anschutz Medical Center, in Aurora.

"Those with chronic kidney disease who drank less than one glass a day had a 29 percent lower risk of cardiovascular events [than those who drank no wine]," he added.

Mehta and his colleagues looked at data from the 2003 to 2006 National Health and Nutrition Examination that included nearly 6,000 people. Of those, about 1,000 had chronic kidney disease.

Having chronic kidney disease increases the risk of cardiovascular disease. About 26 million Americans have chronic kidney disease, often caused by diabetes and high blood pressure, according to the National Kidney Foundation. Previous research has found that moderate drinking is linked to heart benefits.

Exactly why wine might do that is not known for sure, Mehta said. Drinking moderate amounts is linked with lower levels of protein in the urine. In those who have kidney disease, higher protein levels in the urine are linked with an increased risk of progression of kidney disease. The polyphenols found in wine have anti-inflammatory and antioxidant properties, which may help explain the protective heart effects, he said.