Skip to content

An interesting article that discusses research that finds advantages to being dyslexic. Perhaps think in terms of cognitive diversity. From Scientific American:

The Advantages of Dyslexia

With reading difficulties can come other cognitive strengths.

In our laboratory at the Harvard-Smithsonian Center for Astrophysics we have carried out studies funded by the National Science Foundation to investigate talents for science among those with dyslexia. The dyslexic scientist Christopher Tonkin described to me his sense of this as a sensitivity to “things out of place.”  He’s easily bothered by the weeds among the flowers in his garden, and he felt that this sensitivity for visual anomalies was something he built on in his career as a professional scientist.  Such differences in sensitivity for causal perception may explain why people like Carole Greider and Baruj Benacerraf have been able to perform Nobel prize-winning science despite lifelong challenges with dyslexia.

Why are there advantages in dyslexia?  Is it something about the brains of people with dyslexia that predisposes them to causal thinking? Or, is it a form of compensation, differences in the brain that occur because people with dyslexia read less? Unfortunately, the answer to these questions is unknown.

One thing we do know for sure is that reading changes the structure of the brain. An avid reader might read for an hour or more a day, day in and day out for years on end. This highly specialized repetitive training, requiring an unnaturally precise, split-second control over eye movements, can quickly restructure the visual system so as to make some pathways more efficient than the others.

My colleagues and I suggested that one reason people with dyslexia may exhibit visual talents is that they have difficulty managing visual attention⁠. It may at first seem ironic that a difficulty can lead to an advantage, but it makes sense when you realize that what we call “advantages” and “disadvantages” have meaning only in the context of the task that needs to be performed.

For example, imagine you’re looking to hire a talented security guard. This person’s job will be to spot things that look odd and out of place, and call the police when something suspicious —say, an unexpected footprint in a flowerbed— is spotted. If this is the person’s task, would you rather hire a person who is an excellent reader, who has the ability to focus deeply and get lost in the text, or would you rather hire a person who is sensitive to changes in their visual environment, who is less apt to focus and block out the world?

Tasks such as reading require an ability to focus your attention on the words as your eyes scan a sentence, to quickly and accurately shift your attention in sequence from one word to the next.  But, to be a good security guard you need an opposite skill; you need to be able to be alert to everything all at once, and though this isn’t helpful for reading, this can lead to talents in other areas.

A series of studies by an Italian team led by Andrea Facoetti have shown that children with dyslexia often exhibit impairments in visual attention. In one study,Facoetti’s team measured visual attention in 82 preschool children who had not yet been taught to read. The researchers then waited a few years until these children finished second grade, and then examined how well each child had learned reading. They found that those who had difficulty focusing their visual attention in preschool had more difficulty learning to read.

These studies raise the possibility that visual attention deficits, present from a very early age, are responsible for the reading challenges that are characteristic of dyslexia. If this theory is upheld, it would also suggest that the observed advantages are not an incidental byproduct of experience with reading, but are instead the result of differences in the brain that were likely present from birth.

If this is indeed the case, given that attention affects perception in very general ways, any number of advantages should emerge.  While people with dyslexia may tend to miss details in their environment that require an attentional focus, they would be expected to be better at noticing things that are distributed more broadly.  To put this another way, while typical readers may tend to miss the forest because its view is blocked by all the trees, people with dyslexia may see things more holistically, and miss the trees, but see the forest.

Among other advantages observed, Gadi Geiger and his colleagues at MIT found that people with dyslexia can distribute their attention far more broadly than do typical readers, successfully identifying letters flashed simultaneously in the center and the periphery for spacings that were much further apart. They also showed that such advantages are not just for things that are visual, but that they apply to sounds as well. In one study, simulating the sounds of a cocktail party, they found that people with dyslexia were able to pick out more words spoken by voices widely-distributed in the room, compared with people who were proficient readers.

Whether or not observations of such advantages —measured in the laboratory— have applications to talents in real life remains an open question. But, whatever the reason, a clear trend is beginning to emerge: People with dyslexia may exhibit strengths for seeing the big picture (both literally and figuratively) others tend to miss.  Thomas G. West has long-argued that out-of-the-box thinking is historically part and parcel of dyslexia, and more recently physicians Brock and Fernette Eide have advanced similar arguments. Sociologists, such as Julie Logan of the Cass Business School in London agree.  Logan found that dyslexia is relatively common among business entrepreneurs; people who tend to think differently and see the big picture in thinking creatively about a business.

Whatever the mechanism, one thing is clear: dyslexia is associated with differences in visual abilities, and these differences can be an advantage in many circumstances, such as those that occur in science, technology, engineering and mathematics. It’s only when everything is all the same that nothing productive can get done. Neurological differences similarly drive the engine of society, to create the contrasts between hot and cold that lead to productive work. Impairments in one area can lead to advantages in others, and it is these differences that drive progress in many fields, including science and math.

Reading this article, I kept thinking of vampires and Transylvania. But the million dollar question is - will it work? From New Scientist:

Young blood to be used in ultimate rejuvenation trial

 In October, people with Alzheimer's disease will be injected with the blood of young people in the hope that it will reverse some of the damage caused by the condition.

The scientists behind the experiment have evidence on their side. Work in animals has shown that a transfusion of young mouse blood can improve cognition and the health of several organs in older mice. It could even make those animals look younger. The ramifications for the cosmetics and pharmaceutical industries could be huge if the same thing happens in people.

Disregarding vampire legends, the idea of refreshing old blood with new harks back to the 1950s, when Clive McCay of Cornell University in Ithaca, New York, stitched together the circulatory systems of an old and young mouse – a technique called heterochronic parabiosis. He found that the cartilage of the old mice soon appeared younger than would be expected.

It wasn't until recently, however, that the mechanisms behind this experiment were more clearly understood. In 2005, Thomas Rando at Stanford University in California and his team found that young blood returned the liver and skeletal stem cells of old mice to a more youthful state during heterochronic parabiosis. The old mice were also able to repair injured muscles as well as young mice (Nature, doi.org/d4fkt5). Spooky things seemed to happen in the opposite direction, too: young mice that received old blood appeared to age prematurely. In some cases, injured muscles did not heal as fast as would be expected.

Several other experiments have shown similar effects. In 2012, Amy Wagers at Harvard University showed that young blood can reverse heart decline in old mice.

Once the researchers had ruled out the effect of reduced blood pressure on the older mice, they identified a protein in the blood plasma called growth differentiation factor 11 (GDF11) that appeared to fall with age. To see if it was linked to the rejuvenating effects, the team gave old mice with enlarged hearts daily injections of GDF11 for 30 days. Their hearts decreased in size almost as much as they had in the parabiosis experiments (Cell, doi.org/q2f).

In both mice and humans, GDF11 falls with age. We don't know why it declines, but we know it is involved in several mechanisms that control growth. It is also thought to mediate some age-related effects on the brain, in part by activation of another protein that is involved in neuronal growth and long-term memory.

So the billion-dollar question is: would a GDF11 boost have the same effect in humans? Wyss-Coray thinks it will, having taken the next step of injecting young human blood plasma into old mice. His preliminary results suggest that human blood has similar rejuvenating benefits for old mice as young mouse blood does.

"We saw these astounding effects," he says. "The human blood had beneficial effects on every organ we've studied so far."

Now, the final step – giving young human blood plasma to older people with a medical condition – is about to begin. Getting approval to perform the experiment in humans has been relatively simple, says Wyss-Coray, thanks to the long safety record of blood transfusions. So in early October, a team at Stanford School of Medicine will give a transfusion of blood plasma donated by people under 30 to older volunteers with mild to moderate Alzheimer's.

Following the impressive results in animal experiments, the team hopes to see immediate improvements in cognition, but Wyss-Coray cautions that it is still very experimental. All researchers involved in the work agree that GDF11 is unlikely to be the only factor that keeps organs youthful. "It's too optimistic to think there would be just one factor," says Francesco Loffredo, who studies the effects of young blood in old animals at Harvard University. "It's much more likely to be several factors that exert these effects in combination."

Alessandro Laviano at the Sapienza University of Rome in Italy says that the research on diseases of ageing certainly holds promise, but he is more interested in the potential use of young blood in chronic disease. ...Before moving to clinical trials in people with cancer we need to learn more about the dynamics of the beneficial factors in blood, says Laviano, such as when they are at their peak. Do we reach a peak at 5 or 35 years? "We just don't know," he says.

An earlier related exciting study (from May 2014) in which it was found that "the blood of young mice has the ability to restore mental capabilities in old mice". From Science Daily:

Infusion of young blood recharges brains of old mice

An interesting small study of the human armpit bacterial community. From Real Clear Science:

Antiperspirants Alter Your Armpit Bacteria and Could Actually Make You Smell Worse

In modern society, antiperspirants are widely hailed as a godsend, dispelling the inconvenient odors wafting from armpits everywhere. But a new study casts doubts on their vaunted position. As it turns out, antiperspirants may actually make you smell worse in the long run.

For 90% of all Americans, slathering on deodorants and antiperspirants is a daily occurrence, a precautionary measure against foul odors and unsightly sweat stains. The odors arise when bacteria living in our armpits break down lipids and amino acids excreted in sweat into more smelly substances. Deodorants employ antimicrobial agents that kill off bacteria, as well as chemicals that replace noxious odors with pleasant aromas. Deodorants that double as antiperspirants, like Degree, Old Spice, and Dove, take the process one step further by physically plugging sweat glands with aluminum-based compounds.

While most of us might only concern ourselves with the dry, aromatic benefits of antiperspirants and deodorants, researchers at the Laboratory of Microbial Ecology and Technology at the University of Ghent in Belgium are more interested in the effects on bacteria. Billions of bacteria dwell in the "rain forests" under our arms, and the substances we don are mucking with their habitats!

To uncover how deodorants and antiperspirants affect armpit bacteria, Chris Callewaert, a Ph.D student specializing in microbial ecology, and a team of researchers recruited eight subjects for a task a great many people (and especially their friends) might deem unbearable: Six males and two females pledged not to use deodorant or antiperspirant for an entire month. Specifically, four subjects stopped using their deodorants and another four stopped using their antiperspirant deodorant. (Most antiperspirants are also deodorants. See image below for an example.) Another control subject who did not regularly use either was asked to use deodorant for a month. The duration was chosen because it takes approximately 28 days for a new layer of skin cells to form.

The researchers analyzed the diversity and abundance of subjects' armpit bacteria at various timepoints before they stopped using antiperspirant, during the period of abstaining from antiperspirant, and for a few weeks after resuming the use of antiperspirant. Switching hygiene habits plainly altered the armpit bacterial communities of every subject. Since no two armpits and their resident bacteria are identical, it was difficult to pinpoint precise changes brought about by deodorants or antiperspirants, but one clear trend did materialize: antiperspirants resulted in a clear increase of Actinobacteria.

You might not recognize the name of Actinobacteria, but chances are, you've smelled them. Dominated by Corynebacterium, they are the major instigators of noxious armpit odor. Other microbes that inhabit the armpit, like Firmicutes and Staphylococcus, don't produce odors as quickly, nor are those odors nearly as pungent.

Callewaert believes the aluminum compounds in antiperspirants may be to blame, killing off "good," less smelly bacteria and allowing "bad" bacteria to dominate. His study found that deodorants which lack these sweat-blocking antiperspirant compounds are actually linked to a slight decrease of stinky Actinobacteria.

Though antiperspirants and deodorants are widely used, they are only a temporary fix."The measures we utilize today do not take away the initial source: the odor causing bacteria," Callewaert told RealClearScience. "Deodorants only mask unpleasant odors. We can do better than that. The follow up of this research is finding better solutions."

And Callewaert is already working on one: "armpit bacterial transplantation"."We take away the bad bacteria from the armpit of somebody with a body odor, and replace it with the good bacteria of a relative who doesn't have a body odor," he explained."So far we have helped over 15 people. For most subjects it brings immediate improvements. Most of them on a permanent time scale, although there are also people who suffer again from a body odor after some months."

The bottom line is to read the ingredients list on products, and avoid all products labeled "antimicrobial" or "antibacterial" (because those are the ones typically containing triclosan and triclorocarban). Over 2000 products contain antibacterial compounds. I've even seen them in pillows, pillow protectors, mattress pads, dish racks, toys, and blankets! As we know from the latest microbiology research, we need to cultivate a healthy microbiome, and not throw it out of whack by continuously trying to kill off all bacteria. From The Atlantic:

It's Probably Best to Avoid Antibacterial Soaps

Antimicrobial chemicals are so ubiquitous that a recent study found them in pregnant mothers' urine and newborns' cord blood. Research shows that their risks may outweigh their benefits.

Antimicrobial chemicals, intended to kill bacteria and other microorganisms, are commonly found in not just soaps, but all kinds of products—toothpaste, cosmetics, and plastics among them. There is evidence that the chemicals aren’t always effective, and may even be harmful, and their ubiquity means people are often continually exposed to them. One such chemical, triclosan, has previously been found in many human bodily fluids. New research found traces of triclosan, triclocarban, and butyl paraben in the urine of pregnant women, and the cord blood of newborn infants. 

The research looked at the same population of 180 expectant mothers living in Brooklyn, New York, most of Puerto Rican descent. In a study published last week in Environmental Science and Technology, researchers from Arizona State University and State University of New York’s Downstate School of Public Health found triclosan in 100 percent of the women’s urine samples, and triclocarban in 87 percent of the samples. Of the 33 cord blood samples they looked at, 46 percent contained triclosan and 23 percent contained triclocarban.

In another, still-unpublished study, the researchers found that all of the cord blood samples contained “at least one paraben,” according to Dr. Rolf Halden, director of ASU’s Center for Environmental Security. 

Triclosan and triclocarban are endocrine disruptors, Halden explains. The risk there is that the chemicals can mimic thyroid hormones, potentially disrupting the metabolism and causing weight gain or weight loss. Previous research has also shown a connection between higher levels of triclosan in urine, and allergy diagnoses in children.

In the study looking at butyl paraben, the researchers found an association between higher exposure to the chemical, and a smaller head circumference and length of babies after they were born. Butyl paraben is used as a preservative, so it’s found in a wider breadth of products, according to Halden.

From Science News: Pregnant women, fetuses exposed to antibacterial compounds face potential health risks 


As the Food and Drug Administration mulls over whether to rein in the use of common antibacterial compounds that are causing growing concern among environmental health experts, scientists are reporting that many pregnant women and their fetuses are being exposed to these substances. The compounds are used in more than 2,000 everyday products marketed as antimicrobial, including toothpastes, soaps, detergents, carpets, paints, school supplies and toys, the researchers say.

The problem with this, explains Pycke, a research scientist at Arizona State University (ASU), is that there is a growing body of evidence showing that the compounds can lead to developmental and reproductive problems in animals and potentially in humans. Also, some research suggests that the additives could contribute to antibiotic resistance, a growing public health problem.

Although the human body is efficient at flushing out triclosan and triclocarban, a person's exposure to them can potentially be constant. "If you cut off the source of exposure, eventually triclosan and triclocarban would quickly be diluted out, but the truth is that we have universal use of these chemicals, and therefore also universal exposure," says Rolf Halden, Ph.D., the lead investigator of the study at ASU.

I've always recommended that people eat as many unprocessed foods as possible, and that one should always read the ingredient list when buying processed and prepared foods. The Center for Science in the Public Interest strongly urges that people avoid the following food ingredients: aspartame, food dyes, mycoprotein (Quorn), and partially hydrogenated oils (trans fat). The following article may be an eye opener for those who think that the FDA (Food and Drug Administration) carefully regulates what goes into our food. Link to the full article to read all the health concerns with mycoprotein (Quorn), Epigllocatechin-3-gallate (EGCG), and carageenan. From The Washington Post:

Food additives on the rise as FDA scrutiny wanes

The explosion of new food additives coupled with an easing of oversight requirements is allowing manufacturers to avoid the scrutiny of the Food and Drug Administration, which is responsible for ensuring the safety of chemicals streaming into the food supply.

And in hundreds of cases, the FDA doesn’t even know of the existence of new additives, which can include chemical preservatives, flavorings and thickening agents, records and interviews show. “We simply do not have the information to vouch for the safety of many of these chemicals,” said Michael Taylor, the FDA’s deputy commissioner for food.

The FDA has received thousands of consumer complaints about additives in recent years, saying certain substances seem to trigger asthmatic attacks, serious bouts of vomiting, intestinal-tract disorders and other health problems.

At a pace far faster than in previous years, companies are adding secret ingredients to everything from energy drinks to granola bars. But the more widespread concern among food-safety advocates and some federal regulators is the quickening trend of companies opting for an expedited certification process to a degree never intended when it was established 17 years ago to, in part, help businesses.

A voluntary certification system has nearly replaced one that relied on a more formal, time-consuming review — where the FDA, rather than companies, made the final determination on what is safe. The result is that consumers have little way of being certain that the food products they buy won’t harm them“We aren’t saying we have a public health crisis,” Taylor said. “But we do have questions about whether we can do what people expect of us.”

In the five decades since Congress gave the FDA responsibility for ensuring the safety of additives in the food supply, the number has spiked from 800 to more than 9,000, ranging from common substances such as salt to new green-tea extracts. This increase has been driven largely by demand from busy Americans, who get more than half their daily meals from processed foods, according to government and industry records. 

Within the past six months, top officials at the FDA and in the food industry have acknowledged that new steps must be taken to better account for the additives proliferating in the food supply. 

For new, novel ingredients — or when approved additives are used in new ways — the law says companies should seek formal FDA approval, which must be based on rigorous research proving the additive is safe. The agency uses the phrase “food additive,” in a narrow legal sense, to apply to substances that get this approval.

But many other additives are common food ingredients — vinegar is considered a classic example. The law allows manufacturers to certify, based on research, that such ingredients are already Generally Recognized as Safe, or GRASFor both types of additives, FDA scientists initially conducted detailed reviews of the company’s research. The agency also published its own evaluation of that research in the Federal Register.

This oversight system shifted dramatically in 1997. In response to a shortage of staff members and complaints from industry that the process was too cumbersome and did not improve food safety, the FDA proposed new rules. The agency told companies that were going the GRAS route — which turned a years-long process into one of months — that they no longer would have to submit their research and raw data. The companies can share just a summary of their findings with the agency.

The changes didn’t work out as planned. For starters, most additives continued to debut without the FDA being notified. Moreover, companies that did choose to go through the FDA oversight process largely abandoned the formal approval route, opting instead for the new, cursory GRAS process, even for additives that could be considered new and novel, according to agency documents and an analysis of those records by the Natural Resources Defense Council.

An average of only two additive petitions seeking formal approval are filed annually by food and chemical companies, while the agency receives dozens of GRAS notifications, according to an NRDC analysis of FDA data. Hundreds of other food chemicals and ingredients have been introduced without notifying the FDA at all, according to agency officials, trade journals and food safety groups.

Companies often bypass the FDA altogether. Under the rules, companies may make their own GRAS determination. Sharing it with the agency and getting it to sign off is voluntary. This is the opposite of what the overisght law intended, the FDA’s Taylor said. 

Even when the FDA approves a new additive or signs off on a company’s GRAS determination, a safe ingredient can turn dangerous if its use becomes more widespread than the agency envisioned. And under the rules, the agency has little way of monitoring this threat after the initial introduction of the additive, called “post-market.”

During the initial review, the FDA sets limits for how much of a chemical or ingredient can be used in a particular product. But the cumulative consumption can soar as the additive is used in more and more types of food and beverages.

Two new studies find problems when vitamin D levels are low. From Science Daily:

Low vitamin D levels linked to increased risks after noncardiac surgery

Patients with low blood levels of vitamin D are at increased risk of death and serious complications after noncardiac surgery, suggests a study. The researchers analyzed the relationship between vitamin D level and surgical outcomes in approximately 3,500 patients who underwent operations other than heart surgery between 2005 and 2011. Only patients who had available data on vitamin D levels around the time of surgery -- from three months before to one month afterward -- were included in the study.

Most patients did not meet the recommended 25-hydroxyvitamin D concentration of greater than 30 nanograms per milliliter (ng/mL). The median vitamin D level was 23.5 ng/mL -- more than 60 percent of patients were in the range of vitamin D insufficiency (10 to 30 ng/mL). Nearly 20 percent had vitamin D deficiency (less than 10 ng/mL).

"Higher vitamin D concentrations were associated with decreased odds of in-hospital mortality/morbidity," the researchers write. For each 5 ng/mL increase in 25-hydroxyvitamin D level, the combined risk of death, cardiovascular events, or serious infections decreased by seven percent.

From Science Daily:

Vitamin D deficiency may reduce pregnancy rate in women undergoing IVF

Women with a vitamin D deficiency were nearly half as likely to conceive through in vitro fertilization (IVF) as women who had sufficient levels of the vitamin, according to a new study. Long known for its role in bone health, vitamin D is a steroid hormone that is emerging as a factor in fertility.

Women who had sufficient levels of vitamin D were nearly twice as likely to conceive as their counterparts with vitamin D deficiency. Since women with sufficient levels of the hormone were more likely to produce top-quality embryos, researchers theorized vitamin D was involved in the production of quality eggs in the ovaries as well as the successful implantation of embryos in the uterus.

This study supports all those people who have long complained about spending all day in a workplace with no windows and just artificial light. From Science Daily:

Natural light in office boosts health

Office workers with more natural light exposure at the office had longer sleep duration, better sleep quality, more physical activity and better quality of life compared to office workers with less light exposure in the workplace, a study shows. 

Employees with windows in the workplace received 173 percent more white light exposure during work hours and slept an average of 46 minutes more per night than employees who did not have the natural light exposure in the workplace. There also was a trend for workers in offices with windows to have more physical activity than those without windows.

Workers without windows reported poorer scores than their counterparts on quality of life measures related to physical problems and vitality, as well as poorer outcomes on measures of overall sleep quality and sleep disturbances.

There is increasing evidence that exposure to light, during the day, particularly in the morning, is beneficial to your health via its effects on mood, alertness and metabolism," said senior study author Phyllis Zee, M.D., a Northwestern Medicine neurologist and sleep specialist. 

This was done in mice, so much more needs to be done. But...if it holds true for humans, probiotics (with IPA-producing bacteria) can be used as therapies for all sorts of diseases. From Medical Xpress:

'Normal' bacteria vital for keeping intestinal lining intact

Scientists at Albert Einstein College of Medicine of Yeshiva University have found that bacteria that aid in digestion help keep the intestinal lining intact. The findings, reported online in the journal Immunity, could yield new therapies for inflammatory bowel disease (IBD) and a wide range of other disorders.

The research involved the intestinal microbiome, which contains some 100 trillion . The role of these microorganisms in promoting or preventing disease is a major emerging field of study. Einstein scientists found that absorption of a specific bacterial byproduct is crucial for maintaining the integrity of the intestinal epithelium —the single-cell layer responsible for keeping intestinal bacteria  and their toxins inside the gut and away from the rest of the body. Breaching of the intact intestinal epithelium is associated with a number of diseases.

"Intestinal bacteria secrete a wide variety of chemicals known as metabolites," said Sridhar Mani, M.D., co-corresponding author of the paper. Dr. Mani and his colleagues suspected that bacterial metabolites exert their influence by binding to and activating a protein in the nuclei of intestinal epithelial cells called the pregnane X receptor (PXR). PXR was known to be activated by chemicals within the body (such as bile acids) as well as by drugs including steroids and antibiotics.

In a series of mouse studies, the researchers found that a metabolite called indole 3-propionicacid (IPA)—produced exclusively by so-called commensal bacteria, which aid in digestion—both strengthens the intestinal epithelium's barrier function and prevents its inflammation by activating PXR. More specifically, PXR activation suppresses production of an inflammatory protein called tumor necrosis factor alpha (TNF-α) while increasing levels of a protein that strengthens the junctions between adjacent intestinal epithelial cells. 

"By adding probiotics in the form of IPA-producing bacteria to the intestine or by administering IPA directly, we may be able to prevent or treat IBD and other inflammatory disorders that occur when the intestinal epithelium has been compromised," said Dr. Mani. "Such a strategy could also be tried for other health problems that may occur when the intestinal epithelium breaks down, including certain forms of liver disease, diabetes, asthma, allergies, obesity and heart disease."

More long-term benefits from breastfeeding. The first study finds that long-term it's as good or better than statins! From Science Daily:

Birthweight and breastfeeding have implications for children's health decades later

Young adults who were breastfed for three months or more as babies have a significantly lower risk of chronic inflammation associated with cardiovascular and metabolic diseases, according to research from the Brown School at Washington University in St. Louis.

"This study shows that birthweight and breastfeeding both have implications for children's health decades later," said Molly W. Metzger, PhD, assistant professor at the Brown School and a co-author of the study with Thomas W. McDade, PhD, of Northwestern University.

"Specifically, we are looking at the effects of these early factors on later levels of C-reactive protein (CRP), a biomarker associated with risk for cardiovascular and metabolic disease," Metzger said. "Comparing the long-term effects of breastfeeding to the effects of clinical trials of statin therapy, we find breastfeeding to exert effects that are as large or larger."

The researchers used data from the U.S. National Longitudinal Study of Adolescent Health, including parent surveys, and blood samples providing measurements of CRP. These findings held up in a series of sibling models, in which one sibling was breastfed and the other was not. Such models provide improved confidence in the results by implicitly controlling for genetic factors for elevated CRP.

This study was published a year ago (Aug. 2013) and shows a long-term benefit to the mother (reduced Alzheimer's risk) of breastfeeding. From Science Daily:

Breastfeeding may reduce Alzheimer's risk

Mothers who breastfeed their children may have a lower risk of developing Alzheimer's Disease, with longer periods of breastfeeding also lowering the overall risk, a new study suggests.

The report, newly published in the Journal of Alzheimer's Disease, suggests that the link may be to do with certain biological effects of breastfeeding. For example, breastfeeding restores insulin tolerance which is significantly reduced during pregnancy, and Alzheimer's is characterised by insulin resistance in the brain.

Any bookworm would totally agree with the study results. From Medical Daily:

Happiness Comes From ‘Experiential Products,’ Like Books And Videos, Just As Much As From Real Life Experiences

Money can't buy happiness, right? Wrong. Books, videos, and other “experiential products” are likely to boost our happiness levels to the same level as life experiences, according to a new study.

San Francisco State University researchers discovered that material items created to enhance an experience can make people just as happy as real life experiences. There are two things happening here: real life experiences help people become closer to others, while experiential products like books can bring people new skills and knowledge, which can result in the same level of happiness, the researchers found. “If your goal is to make yourself happier but you’re a person who likes stuff, then you should buy things that are going to engage your senses. You’re going to be just as happy as if you buy a life experience, because in some sense this product is going to give you a life experience.”

Material things like clothes or jewelry often bring small boosts of happiness that don’t last long. But experiential items bring us knowledge and happiness that lasts longer, the authors say.