Skip to content

Lactobacilli

The human vagina is another microbial community that is nowhere as simple as earlier thought - and it's not just Lactobacillus bacteria.

From The Scientist: Characterizing the “Healthy” Vagina

For years, researchers characterized the microbial community of women’s vaginas as being dominated by Lactobacillus bacteria, which ferment carbohydrates to lactic acid, yielding a low pH that is toxic to many pathogenic microbes. When levels of Lactobacillus drop, the pH becomes more neutral, and the risk of infection rises.

But with research revealing notable variation among women’s vaginal microbiomes, as well as some interesting dynamics of the microbial communities within a single organ, “that dogma is changing a little bit,” said Gregory Buck of the Vaginal Microbiome Consortium at Virginia Commonwealth University (VCU).

The composition and stability of the vaginal microbiome varies by race, age, even within an individual—and it’s quickly become clear that the formula for a “normal,” “healthy” microbial community cannot be computed by ratios of bacterial species. “In the past we’ve made some generalizations about what kinds of bacteria are found in the vagina, what kinds of bacteria are good or healthy or protective,” said microbial ecologist Larry Forney of the University of Idaho. “What the research is showing is there are tremendous differences between women in terms of the kinds of bacteria that are present and the changes in the communities that occur over time.

In June 2010, Forney, Jacques Ravel of the University of Maryland School of Medicine, and their collaborators published a survey of the vaginal microbiomes of nearly 400 women and found that the majority harbored bacterial communities dominated by one of four Lactobacillus strains. More than a quarter of the women studied, however, did not follow this pattern. Instead, their vaginas had fewer Lactobacillus and greater numbers of other anaerobic bacteria, although the bacterial communities always included members of genera known to produce lactic acid.

In many ways, the microbiome of these women resembled the bacterial communities of women suffering from bacterial vaginosis (BV), an infection characterized by an odorous vaginal discharge, Buck noted. “By looking at the microbial components, you’d say they have BV, but they have no clinical symptoms,” he said. “These people are not unhealthy.”

The researchers also found that the composition of a woman’s vaginal microbiome was linked to her race. Eighty percent of Asian women and nearly 90 percent of white women harbored vaginal microbiomes that were dominated by Lactobacillus, while only about 60 percent of Hispanic and black women did. Moreover, vaginal pH varied with ethnicity as well, with Hispanic and black women averaging 5.0 and 4.7, respectively, and Asian and white women averaging 4.4 and 4.2. 

This raises questions about the role of the commensal bacteria and risk of preterm labor , which has been linked to BV—and to low levels of Lactobacillus in particular—and is one-and-a-half times more common among African American women than Caucasian women.

Meanwhile, the researchers continue to sort through 40,000 swabs from more than 6,000 women to better characterize the bacterial communities living in the vagina. But Fettweis and her colleagues face a common problem in microbiome research. “In many samples, only a fraction of [the genetic sequences] align to anything we have in our databases,” she said. “So I think there’s still a lot of work to be done in terms of actually understanding: What are these organisms?”

Another question facing researchers probing the vaginal microbiome is how it is initially colonized. “Where do [the bacteria] come from?” said Forney.

Many suspect that the process occurs during vaginal childbirth. But the adolescent microbiome does not resemble that of a sexually mature woman, having far less Lactobacillus, leading some to suspect that there may be a second colonization of the vagina later in life. And if the birthing process is important to establish the vaginal microbiome, what happens in the case of C-sections? “We have more questions than answers,” Forney said.

The microbiome is also not stable later in life. It is now well known that the vaginal microbiome changes after menopause, containing fewer Lactobacillus than the vaginas of reproductive-aged women, with the notable exception of women on hormone-replacement therapies.

Moreover, recent research has revealed that the composition of the vaginal microbiome can change in as little as 24 hours.

The temporal dynamics of the vaginal microbiome raise important questions about developing microbiota-based diagnostics and therapeutics, said Forney. “If you perform a diagnostic test, would you get a different result tomorrow or the day after? In some cases, yes. How do you incorporate that into [a] decision about whether some kind of intervention is required?”

The study talked specifically about 3 types of bacteria that were different among the groups (severely obese, diabetics, healthy) studied: Firmicutes, Bifidobacteria, Clostridium leptum. From Science Daily:

Gut microbe levels are linked to type 2 diabetes and obesity

People with Type 2 diabetes or obesity have changes in the composition of their intestinal micro-organisms -- called the gut microbiota -- that healthy people do not have, researchers from Turkey have found.

The study lends support to other recent reports that have found an association between specific bacterial species in the human digestive system and obesity and diabetes, according to lead investigator Yalcin Basaran, MD, an endocrinologist from Gulhane Military Medical Academy School of Medicine, Ankara, Turkey.

The human digestive system contains an estimated 10 trillion to 100 trillion bacteria and other microscopic organisms, with each person housing at least 160 different species of organisms, according to Basaran. 

Basaran and his fellow researchers sought to identify the relationship between the gut microbe composition and obesity and Type 2 diabetes. Their study included 27 severely obese adults (20 men and seven women) whose body mass index, or BMI, exceeded 35 kg/m2, as well as 26 adults (18 men and eight women) with newly diagnosed Type 2 diabetes and 28 healthy control subjects (22 men and six women). 

Fecal analysis using a molecular biology technique showed that several of the most common types of bacteria in the gut were present at considerably lower levels in the obese and diabetic groups, compared with healthy controls. These reductions ranged from 4.2 to 12.5 percent in the obese patients and 10 to 11.5 percent in the diabetic patients, Basaran reported.

"Manipulation of intestinal bacteria could offer a new approach to manage obesity and Type 2 diabetes."

Everyone worries and talks about Lyme disease on the east coast of the U.S., but it appears that they should be worrying about multiple infections (including Lyme disease) when bitten by a tick. From Science Daily:

Single tick bite can pack double pathogen punch

People who get bitten by a blacklegged tick have a higher-than-expected chance of being exposed to more than one pathogen at the same time.

"We found that ticks are almost twice as likely to be infected with two pathogens -- the bacterium that causes Lyme disease and the protozoan that causes babesiosis -- than we would have expected," said Felicia Keesing, a professor of biology at Bard College, Adjunct Scientist at the Cary Institute, and co-author of the paper. "That means health care providers and the public need to be particularly alert to the possibility of multiple infections coming from the same tick bite."

Almost 30 percent of the ticks were infected with the agent of Lyme disease. One-third of these were also infected with at least one other pathogen. The agents of Lyme disease and babesiosis were found together in 7 percent of ticks.

"Mice and chipmunks are critical reservoirs for these two pathogens, so ticks that have fed on these animals are much more likely to be co-infected," ...

Not only was co-infection with the agents of Lyme disease and babesiosis greater than expected, but rates of triple infection with the agents of Lyme, babesiosis, and anaplasmosis were about twice as likely as expected. "People in tick-infested parts of the United States such as the Northeast, Mid-Atlantic, and Upper Midwest, are vulnerable to being exposed to two or three diseases from a single tick bite," said Keesing. "And, of course, that risk increases when they're bitten by more than one tick."

For those who missed it. An amusing and informative personal story (Julia Scott) about trying to cultivate a healthy skin biome. Well worth reading. Excerpts from the May 22, 2014 NY Times:

My No-Soap, No-Shampoo, Bacteria-Rich Hygiene Experiment

For most of my life, if I’ve thought at all about the bacteria living on my skin, it has been while trying to scrub them away. But recently I spent four weeks rubbing them in. I was Subject 26 in testing a living bacterial skin tonic, developed by AOBiome, a biotech start-up in Cambridge, Mass. The tonic looks, feels and tastes like water, but each spray bottle of AO+ Refreshing Cosmetic Mist contains billions of cultivated Nitrosomonas eutropha, an ammonia-oxidizing bacteria (AOB) that is most commonly found in dirt and untreated water. AOBiome scientists hypothesize that it once lived happily on us too — before we started washing it away with soap and shampoo — acting as a built-in cleanser, deodorant, anti-inflammatory and immune booster by feeding on the ammonia in our sweat and converting it into nitrite and nitric oxide.

 Because the N. eutropha are alive, he said, they would need to be kept cold to remain stable. I would be required to mist my face, scalp and body with bacteria twice a day. I would be swabbed every week at a lab, and the samples would be analyzed to detect changes in my invisible microbial community.

While most microbiome studies have focused on the health implications of what’s found deep in the gut, companies like AOBiome are interested in how we can manipulate the hidden universe of organisms (bacteria, viruses and fungi) teeming throughout our glands, hair follicles and epidermis. They see long-term medical possibilities in the idea of adding skin bacteria instead of vanquishing them with antibacterials — the potential to change how we diagnose and treat serious skin ailments. 

For my part in the AO+ study, I wanted to see what the bacteria could do quickly, and I wanted to cut down on variables, so I decided to sacrifice my own soaps, shampoo and deodorant while participating. I was determined to grow a garden of my own. Some skin bacteria species double every 20 minutes; ammonia-oxidizing bacteria are much slower, doubling only every 10 hoursAnd now the bacteria were on my skin.

I had warned my friends and co-workers about my experiment, and while there were plenty of jokes — someone left a stick of deodorant on my desk; people started referring to me as “Teen Spirit” — when I pressed them to sniff me after a few soap-free days, no one could detect a difference. Aside from my increasingly greasy hair, the real changes were invisible. By the end of the week, Jamas was happy to see test results that showed the N. eutropha had begun to settle in, finding a friendly niche within my biome.

AOBiome is not the first company to try to leverage emerging discoveries about the skin microbiome into topical products. The skin-care aisle at my drugstore had a moisturizer with a “probiotic complex,” which contains an extract of Lactobacillus, species unknown. There is even a “frozen yogurt” body cleanser whose second ingredient is sodium lauryl sulfate, a potent detergent, so you can remove your healthy bacteria just as fast as you can grow them.

Although a few studies have shown that Lactobacillus may reduce symptoms of eczema when taken orally, it does not live on the skin with any abundance, making it “a curious place to start for a skin probiotic,” said Michael Fischbach, a microbiologist at the University of California, San Francisco. Extracts are not alive, so they won’t be colonizing anything.

It doesn’t help that the F.D.A. has no regulatory definition for “probiotic” and has never approved such a product for therapeutic use. “The skin microbiome is the wild frontier,” Fischbach told me. “We know very little about what goes wrong when things go wrong and whether fixing the bacterial community is going to fix any real problems.”

I asked AOBiome which of my products was the biggest threat to the “good” bacteria on my skin. The answer was equivocal: Sodium lauryl sulfate, the first ingredient in many shampoos, may be the deadliest to N. eutropha, but nearly all common liquid cleansers remove at least some of the bacteria. Antibacterial soaps are most likely the worst culprits, but even soaps made with only vegetable oils or animal fats strip the skin of AOB.

Interesting to think of bacteria and biofilms (bacterial communities resistant to treatment) involved in stress related heart attacks. From Science Daily:

Bacteria help explain why stress, fear trigger heart attacks

Scientists believe they have an explanation for the axiom that stress, emotional shock, or overexertion may trigger heart attacks in vulnerable people. Hormones released during these events appear to cause bacterial biofilms on arterial walls to disperse, allowing plaque deposits to rupture into the bloodstream, according to research published in published in mBio®, the online open-access journal of the American Society for Microbiology.

"Our hypothesis fitted with the observation that heart attack and stroke often occur following an event where elevated levels of catecholamine hormones are released into the blood and tissues, such as occurs during sudden emotional shock or stress, sudden exertion or over-exertion" said David Davies of Binghamton University, Binghamton, New York, an author on the study.

Davies and his colleagues isolated and cultured different species of bacteria from diseased carotid arteries that had been removed from patients with atherosclerosis. Their results showed multiple bacterial species living as biofilms in the walls of every atherosclerotic (plaque-covered) carotid artery tested.

In normal conditions, biofilms are adherent microbial communities that are resistant to antibiotic treatment and clearance by the immune system. However, upon receiving a molecular signal, biofilms undergo dispersion, releasing enzymes to digest the scaffolding that maintains the bacteria within the biofilm. These enzymes have the potential to digest the nearby tissues that prevent the arterial plaque deposit from rupturing into the bloodstream. According to Davies, this could provide a scientific explanation for the long-held belief that heart attacks can be triggered by a stress, a sudden shock, or overexertion.

To test this theory they added norepinephrine, at a level that would be found in the body following stress or exertion, to biofilms formed on the inner walls of silicone tubing."At least one species of bacteria -- Pseudomonas aeruginosa -- commonly associated with carotid arteries in our studies, was able to undergo a biofilm dispersion response when exposed to norepinephrine, a hormone responsible for the fight-or-flight response in humans," said Davies. Because the biofilms are closely bound to arterial plaques, the dispersal of a biofilm could cause the sudden release of the surrounding arterial plaque, triggering a heart attack.

To their knowledge, this is the first direct observation of biofilm bacteria within a carotid arterial plaque deposit, says Davies. This research suggests that bacteria should be considered to be part of the overall pathology of atherosclerosis and management of bacteria within an arterial plaque lesion may be as important as managing cholesterol.

Note the red biofilm bacterial colonies within the diseased arterial wall:

Bacteria stained with a fluorescent bacterial DNA probe show up as red biofilm microcolonies within the green tissues of a diseased carotid arterial wall.

A big benefit to exercising - more microbial diversity, which means a healthier gut microbiome, which means better health. From Medscape:

Exercise Linked to More Diverse Intestinal Microbiome

Professional athletes are big winners when it comes to their gut microflora, suggesting a beneficial effect of exercise on gastrointestinal health, investigators report in an article published online June 9 in Gut.

DNA sequencing of fecal samples from players in an international rugby union team showed considerably greater diversity of gut bacteria than samples from people who are more sedentary.

Having a gut populated with myriad species of bacteria is thought by nutritionists and gastroenterologic researchers to be a sign of good health. Conversely, the guts of obese people have consistently been found to contain fewer species of bacteria, note Siobhan F. Clarke, PhD, from the Teagasc Food Research Centre, Moorepark, Fermoy. "Our findings show that a combination of exercise and diet impacts on gut microbial diversity. In particular, the enhanced diversity of the microbiota correlates with exercise and dietary protein consumption in the athlete group," the authors write.

The investigators used 16S ribosomal RNA amplicon sequencing to evaluate stool and blood samples from 40 male elite professional rugby players (mean age, 29 years) and 46 healthy age-matched control participants. 

Relative to control participants with a high BMI, athletes and control participants with a low BMI had improved metabolic markers. In addition, although athletes had significantly increased levels of creatine kinase, they also had overall lower levels of inflammatory markers than either of the control groups.

Athletes were also found to have more diverse gut microbiota than controls, with organisms in approximately 22 different phyla, 68 families, and 113 genera. Participants with a low BMI were colonized by organisms in just 11 phyla, 33 families, and 65 genera, and participants with a high BMI had even fewer organisms in only 9 phyla, 33 families, and 61 genera.

The professional rugby players, as the investigators expected, had significantly higher levels of total energy intake than the control participants, with protein accounting for 22% of their total intake compared with 16% for control participants with a low BMI and 15% for control participants with a high BMI. When the authors looked for correlations between health parameters and diet with various microbes or microbial diversity, they found significant positive association between microbial diversity and protein intake, creatine kinase levels, and urea.

It seems like the more microbe exposure in the first year of life, the better for the immune system. From Science Daily:

Newborns exposed to dirt, dander, germs may have lower allergy, asthma risk

Infants exposed to rodent and pet dander, roach allergens and a wide variety of household bacteria in the first year of life appear less likely to suffer from allergies, wheezing and asthma, according to results of a study conducted by scientists at the Johns Hopkins Children's Center and other institutions.

Previous research has shown that children who grow up on farms have lower allergy and asthma rates, a phenomenon attributed to their regular exposure to microorganisms present in farm soil. Other studies, however, have found increased asthma risk among inner-city dwellers exposed to high levels of roach and mouse allergens and pollutants. The new study confirms that children who live in such homes do have higher overall allergy and asthma rates but adds a surprising twist: Those who encounter such substances before their first birthdays seem to benefit rather than suffer from them. Importantly, the protective effects of both allergen and bacterial exposure were not seen if a child's first encounter with these substances occurred after age 1, the research found.

"What this tells us is that not only are many of our immune responses shaped in the first year of life, but also that certain bacteria and allergens play an important role in stimulating and training the immune system to behave a certain way."

The study was conducted among 467 inner-city newborns from Baltimore, Boston, New York and St. Louis whose health was tracked over three years.

Infants who grew up in homes with mouse and cat dander and cockroach droppings in the first year of life had lower rates of wheezing at age 3, compared with children not exposed to these allergens soon after birth. The protective effect, moreover, was additive.  In addition, infants in homes with a greater variety of bacteria were less likely to develop environmental allergies and wheezing at age 3.

When researchers studied the effects of cumulative exposure to both bacteria and mouse, cockroach and cat allergens, they noticed another striking difference. Children free of wheezing and allergies at age 3 had grown up with the highest levels of household allergens and were the most likely to live in houses with the richest array of bacterial species. Some 41 percent of allergy-free and wheeze-free children had grown up in such allergen and bacteria-rich homes. By contrast, only 8 percent of children who suffered from both allergy and wheezing had been exposed to these substances in their first year of life.

Yesterday I read and reread a very interesting journal review paper from Sept. 2013 that discussed recent studies about probiotics and treatment of respiratory ailments, including sinusitis. Two of the authors are those from the Abreu et al sinusitis study from 2012 (that I've frequently mentioned and that guided our own Sinusitis Treatment) that found that Lactobacillus sakei protects against sinusitis and treats sinusitis. Some of the things this paper discussed are: microbial communities in the airways and sinuses vary between healthy and non-healthy individuals (and each area or niche seems to have distinct communities), that lactic acid bacteria (including Lactobacillus sakei) are generally considered the "good guys" in our sinus microbiomes (the communities of microbes living in our sinuses), and that treatments of the future could consist of "direct localized administration of microbial species" (for example, getting the bacteria directly into the sinuses through the nasal passages with a nasal spray, or dabbing fermented kimchi juice like I did). They also mentioned that maybe one could also get probiotics to the GI tract (e.g., by eating probiotics) and maybe this would have some benefits. So far it seems that administering something containing L.sakei directly (by nasal spray or dabbing kimchi juice - as I did) seems to work best for treating sinusistis.

They also discussed that lactic acid bacteria are found in healthy mucosal surfaces in the respiratory, GI, and vaginal tract. They then proposed that lactic acid bacteria (including L.sakei) act as pioneer, or keystone species, and that they act to shape mucosal ecosystems (the microbiomes), and permit other species to live there that share similar attributes, and so promote "mucosal homeostasis". It appears that having a healthy sinus microbiome protects against pathogenic species.

So yeah - the bottom line is that microbial supplementation of beneficial bacteria seems very promising in the treatment of respiratory ailments. And for long-term successful sinusitis treatment, one would need to improve the entire sinus microbial community (with a "mixed species supplement"), not just one bacteria species. (By the way, maybe that is also why using kimchi in our successful Sinusitis Treatment works - it is an entire microbial community with several lactic acid species, including the all important Lactobacillus sakei. (NOTE: See Sinusitis Treatment Summary page and The One Probiotic That Treats Sinusitis for some easy methods  using various probiotics to treat chronic sinusitis. These articles get updated frequently.) From Trends in Microbiology:

Probiotic strategies for treatment of respiratory diseases.

More recently, Abreu et al. profiled the sinus microbiome of CRS (chronic rhinosinusitis) patients and healthy controls at high resolution [2]. Microbial burden was not significantly different between healthy subject and CRS patient sinuses. Moreover, known bacterial pathogens such as H. influenza, P. aeruginosa, and S. aureus were detected in both healthy and CRS sinuses; however, the sinus microbiome of CRS patients exhibited characteristics of community collapse, in other words many microbial species associated with healthy individuals, in particular lactic acid bacteria, were significantly reduced in relative abundance in CRS patients. In this state of microbiome depletion, the species C. tuberculostearicum was significantly enriched. This indicates that composition of the microbiome is associated with disease status and appears to influence the activity of pathogens within these assemblages.

Although sinusitis patients in the Abreu study exhibited hallmark characteristics of community collapse, the comparator group – healthy individuals – represented an opportunity to mine microbiome data and identify those bacterial species specific to the sinus niche that putatively protect this site. The authors demonstrated that a relatively diverse group of phylogenetically distinct lactic acid bacteria were enriched in the healthy sinus microbiota [2]. As proof of principle that the sinonasal microbiome itself or indeed specific members of these consortia protect the mucosal surface from pathogenic effects, a series of murine studies were undertaken. These demonstrated that a replete, unperturbed sinus microbiome prevented C. tuberculostearicum pathogenesis. Moreover, even in the context of an antimicrobial-depleted microbiome, Lactobacillus sakei when co-instilled with C. tuberculostearicum into the nares of mice afforded complete mucosal protection against the pathogenic species. Although this is encouraging, it is unlikely that a single species can confer long-term protection in a system that is inherently multi-species and constantly exposed to the environment. Indeed, previous studies and ecological theory supports the hypothesis that multi-species consortia represent more robust assemblages, and tend to afford improved efficacy with respect to disease or infection outcomes [44,45]. This study therefore provides a basis for the identification of what may be termed a minimal microbial population (MMP) composed of multiple phylogenetically distinct lactic acid bacteria, including L. sakei. Such a mixed species assemblage would form the foundation of a rationally designed, sinus-specific bacterial supplement to combat established chronic diseases or, indeed, be used prophylactically to protect mucosal surfaces against acute infection.

Therefore, although site-specific diseases such as chronic sinusitis may well be confined to the sinus niche and be resolved simply by localized microbe-restoration approaches, it is also entirely plausible that an adjuvant oral microbe-supplementation strategy and dietary intervention (to sustain colonization by the introduced species) may increase efficacy and ultimately improve long-term patient outcomes. This two-pronged approach may be particularly efficacious for patients who have lost protective GI microbial species due to
administration of multiple courses of oral antimicrobials to manage their sinus disease.

Although it is impossible to define the precise strains or species that will be used in future microbial supplementation strategies to treat chronic inflammatory diseases, there is a convergence of evidence indicating that healthy mucosal surfaces in the respiratory, GI, and vaginal tract are colonized by lactic acid bacteria. We would venture that members of this group act as pioneer, keystone species that, through their multitude of functions (including bacteriocin production, competitive colonization, lactate and fatty acid production), can shape mucosal ecosystems, thereby permitting co-colonization by phylogenetically distinct
species that share functionally similar attributes. Together, these subcommunities promote mucosal homeostasis and represent the most promising species for future microbe-supplementation strategies.

It is now more than 69 weeks since I first successfully started using kimchi to treat the chronic sinusitis that had plagued me (and my family) for so many years. I originally reported on the Sinusitis Treatment on Dec. 6, 2013 (the method is described there) and followed up on Feb. 21, 2014.

Based on the sinus microbiome research of N. Abreu et al (from Sept. 2012 in Sci.Transl.Med.) that discussed Lactobacillus sakei as a sinusitis treatment, I had looked for a natural source of L.sakei and found it in kimchi. Since dabbing the kimchi juice in our nostrils as needed, all 4 of us are still free of chronic sinusitis and off all antibiotics at close to a year and a half (I'm optimistic). So how is year two shaping up?

Well, it is different and even better than year one. Much of the first year seemed to be about needing to build up our beneficial bacteria sinus community (sinus microbiome) through kimchi treatments, eating fermented foods (such as kimchi, kefir, yogurt), whole grains, vegetables, and fruits. And of course not having to take antibiotics helped our sinus microbial community.

But now in year two we notice that we absolutely don't need or want frequent kimchi treatments - even when sick. Daily kimchi treatments, even during acute sinusitis (after a cold), actually seems to be too much and makes us feel worse (for ex., the throat becomes so dry, almost like a sore throat). But one treatment every 2 or 3 days while sick is good. In fact, this year we have done so few treatments, that even when ill, each time the sick person stopped doing kimchi treatments before he/she was fully recovered, and any sinusitis symptoms kept improving on their own until full recovery! Amazing!

To us, this is a sign that all of us have much improved sinus microbiomes from a year ago. And interestingly, we are getting fewer colds/viruses than ever.  Our guiding principle this year is: "Less is more." In other words, at this point only do a kimchi sinus treatment when absolutely needed, and then only do it sparingly. Looking back, we think we should have adopted the "less is more" last year after the first 6 months of kimchi treatments.

The other thing we've done is cut back on daily saline nasal irrigation, especially when ill and doing kimchi treatments. We've started thinking that the saline irrigation also flushes out beneficial bacteria.

The conclusion is: YES, a person's microbiome can improve, even after years or decades of chronic sinusitis. It is truly amazing and wonderful to not struggle with it, and to feel normal.

(UPDATE: See Sinusitis Treatment Summary page and The Best Probiotic For Sinus Infections for more information, more products one can use, and more L. sakei treatment information. We are using the high quality refrigerated product Lacto Sinus these days.)

---------------------------------------------------------------------------------------------------------------------

SUMMARY OF TREATMENT METHOD USING KIMCHI

The following is a quick summary of the method we use (see Sinusitis Treatment Summary page).We use live (fermented and not pasteurized) vegan (no seafood added) kimchi. Choosing vegan (no seafood added) kimchi is a personal preference. Lactobacillus sakei is found in meat, seafood, and some vegetables.

Treatment Method: 1) Wash hands, and then use a clean teaspoon to put a little juice from the kimchi jar into a small clean bowl. 2) Dip finger in the kimchi juice and dab it or smear it along the insides of one nostril (about 1/2" into the nostril). 3) Dip finger in kimchi juice again and repeat in other nostril. 4) Do this several times. If I needed to blow my nose at this point I would, and afterwards I would put more kimchi juice up each nostril (again repeating the procedure) and then not blow my nose for at least an hour (or more). 5) Afterwards, any unused kimchi in the little bowl was thrown out and not replaced in the main kimchi jar. (Note: Put the main kimchi jar back in the refrigerator. Also, once opened, take kimchi juice from it for no more than 6 days.)

My rationale was that I was inhaling the bacteria this way and that it would travel up the nasal passages on their own to my sinuses. I did this regimen once or twice a day initially until I started feeling better, then started doing it less frequently, and eventually only as needed.

I spent time this past week searching the medical literature (US National Library of Medicine - Medline/PubMed) for the latest in sinusitis research. I wish I could tell you that amazing research has been happening recently, especially with the sinus microbiome (which could mean treating sinusitis with microbes), but I was disappointed. Really disappointed.

I did four searches: one for "sinusitis" (looked at 600+ studies dating back to summer 2013), then "chronic sinusitis" (going back to fall 2012), then "sinusitis, probiotics", and finally "sinusitis, microbiome". The "sinusitis, probiotics" search turned up 10 studies dating back to 2002. The "sinusitis, microbiome" search turned up a grand total of 13 studies, with the oldest dating back to 2004. Of course the sinus microbiome research by Abreu et al from September 2012  discussing Lactobacillus sakei and which I based my personal (and successful) kimchi sinusitis treatment was on the list (see my Dec. 5 post for a discussion of their research). But none of the other studies looked at Lactobacillus sakei (which is in kimchi).

Some of the findings among the many chronic sinusitis studies: microbial diversity is lower in antibiotic treated chronic sinusitis sufferers (than in healthy controls) and the microbial communities more uneven (meaning some microbes dominated over others), and greater Staphylococcus aureus populations among those with chronic sinusitis. After antibiotic treatment patients typically became colonized by microbes that are less susceptible to the prescribed antibiotics. One study found that Staphylococcus epidermidis (SE) may have some effectiveness against Staphylococcus aureus (SA) in the sinusitis microbiome in mice. Lactobacillus rhamnosus was not found to be effective against sinusitis. A number of studies reported biofilms in the sinuses which are highly resistant to medicines. Some studies found that smoking or exposure to second-hand smoke is linked to chronic sinusitis. (June 2016 UPDATE: I should have said that Lactobacillus rhamnosus (R0011 strain) was not effective against sinusitis when taken orally (a tablet) twice a day for 4 weeks in the study. There have been no further studies since then looking at L. rhamnosus for sinusitis treatment. It is unknown whether spraying or smearing/dabbing L. rhamnosus directly into the nostrils would have a positive effect)

Everyone agreed that state of the art genetic analyses found many more microbial species than older methods (the least effective was the traditional culture method). Several studies suggested that perhaps chronic sinusitis is due to immunological defects and one suggested that it was due to "immune hyperresponsiveness" to organisms in the sinuses. Surprisingly, some studies reported that there are more microbes or microbial species in chronic sinusitis patients than in control patients and that Staphylococcus aureus may be dominant (NOTE: These results may be due to not having been done with state of the art genetic analyses which would have picked up more microbial diversity. Another issue is where in the respiratory tract the samples were taken from, because it seems that the different areas have different microbial communities).

There was frequent mention that chronic sinusitis affects millions of people each year in the US, that little is known about its exact cause, and that there is controversy over appropriate treatment. Originally doctors thought that healthy sinuses were sterile, and it has taken a while to realize that is untrue. It is clear that researchers are only now trying to discover what microbial communities live in healthy individuals compared to those with chronic sinusitis.

But it appeared to me that the majority of the studies from the last 2 years indicated that treatment of chronic sinusitis is still: first try antibiotics, then antibiotics plus inhaled corticosteroids and perhaps nasal saline irrigation, then followed by endoscopic sinus surgery (or sometimes balloon dilation), then perhaps steroid drip implants (steroid-eluting sinus implants), and then there may be revision surgeries.

So I'm sticking with my easy-to-do, inexpensive, and fantastically successful kimchi (Lactobacillus sakei) sinusitis treatment. Of course! (see my Dec. 6, 2013 and Feb. 21, 2014 posts or click on the Sinusitis Treatment link for further information).